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Abstract

Ovarian cancer (OC) is the fifth cancer death cause in women worldwide. The malignant

nature of this disease stems from its unique dissemination pattern. Epithelial-to-mesenchy-

mal transition (EMT) has been reported in OC and downregulation of Epithelial cadherin (E-

cadherin) is a hallmark of this process. However, findings on the relationship between E-

cadherin levels and OC progression, dissemination and aggressiveness are controversial.

In this study, the evaluation of E-cadherin expression in an OC tissue microarray revealed

its prognostic value to discriminate between advanced- and early-stage tumors, as well as

serous tumors from other histologies. Moreover, E-cadherin, Neural cadherin (N-cadherin),

cytokeratins and vimentin expression was assessed in TOV-112, SKOV-3, OAW-42 and

OV-90 OC cell lines grown in monolayers and under anchorage-independent conditions to

mimic ovarian tumor cell dissemination, and results were associated with cell aggres-

siveness. According to these EMT-related markers, cell lines were classified as mesenchy-

mal (M; TOV-112), intermediate mesenchymal (IM; SKOV-3), intermediate epithelial (IE;

OAW-42) and epithelial (E; OV-90). M- and IM-cells depicted the highest migration capacity

when grown in monolayers, and aggregates derived from M- and IM-cell lines showed lower

cell death, higher adhesion to extracellular matrices and higher invasion capacity than E-

and IE-aggregates. The analysis of E-cadherin, N-cadherin, cytokeratin 19 and vimentin

mRNA levels in 20 advanced-stage high-grade serous human OC ascites showed an IM

phenotype in all cases, characterized by higher proportions of N- to E-cadherin and vimentin

to cytokeratin 19. In particular, higher E-cadherin mRNA levels were associated with cancer
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antigen 125 levels more than 500 U/mL and platinum-free intervals less than 6 months. Alto-

gether, E-cadherin expression levels were found relevant for the assessment of OC pro-

gression and aggressiveness.

Introduction

Ovarian cancer (OC) is the seventh most common cancer and the fifth cause of cancer death

in women worldwide [1]. Epithelial OC is the most frequent type, comprising 90% of all cases

[2]. Largely asymptomatic, more than 70% of patients affected with this disease are diagnosed

at an advanced stage, with a 5-year survival rate lower than 20% [3].

The malignant nature of OC stems from its unique dissemination pattern and consequent

metastatic behavior; tumor cells can spread directly throughout the peritoneal cavity due to

the lack of an anatomical barrier. OC peritoneal metastasis relies on the ability of exfoliated

primary tumor cells to aggregate in multicellular structures, survive in suspension and subse-

quently adhere to and infiltrate the mesothelial lining of the peritoneum and omentum [3].

This “seeding” of the abdominal cavity is also associated with ascites formation (accumulation

of malignant fluid) and is responsible for most of the OC morbidity and mortality [4].

In solid tumors, the loss of cellular contacts contributes to distortion of normal tissue archi-

tecture and promotes cancer progression and dissemination. Among proteins involved in epi-

thelial cell-cell adhesion, Epithelial cadherin (E-cadherin) plays a key role. E-cadherin is the

founder member of the cadherin superfamily, a group of cell surface glycoproteins that medi-

ate calcium-dependent cellular adhesion [5]. The human E-cadherin gene, called CDH1,

encodes a 120 kDa mature single-span transmembrane protein localized at the plasma mem-

brane of epithelial cells. Whereas the E-cadherin extracellular domain is involved in cellular

adhesion, the intracellular domain interacts with the actin cytoskeleton to strengthen cell-cell

interactions by means of adaptor proteins, i.e. β-catenin, and participates in signal transduc-

tion pathways [6].

E-cadherin has been defined as a tumor suppressor, since it has been frequently found

downregulated in malignant epithelial tumors [7–9]. Several mechanisms have been involved

in E-cadherin deregulation, among them loss of heterozygosity at the 16q22.1 chromosome

region, occurrence of CDH1 inactivating mutations, CDH1 gene promoter hypermethylation,

overexpression of E-cadherin transcriptional repressor factors and post-translational modifi-

cations (i.e. phosphorylation and glycosylation) [10]. Associated to the decrease in E-cadherin

levels, epithelial cells may acquire a mesenchymal phenotype, losing cell-cell adhesion and

gaining a more motile and invasive behavior [11]. This process is known as epithelial-to-mes-

enchymal transition (EMT) and has been recognized as a key event not only during embryonic

development, but also under pathological conditions such as cancer progression [12].

Cellular changes characteristic of the EMT process occur in association with protein and

gene expression modifications, among them reduced levels of epithelial intermediate filament-

forming proteins (i.e. cytokeratins), overexpression of type III mesenchymal intermediate fila-

ment protein, called vimentin, and alterations in cell-cell and cell-matrix adhesion molecules

[13]. Another key feature of the EMT process is the “cadherin switch” phenomenon, in which

E-cadherin downregulation is associated with Neural cadherin (N-cadherin) expression [14].

This switch has been related with an increased cell motility and cell invasion capacity [14,

15], and it can be regulated by a number of zinc-finger transcription factors that negatively

modulate E-cadherin expression, including Twist, Snail, Slug, ZEB1, among others [16, 17].
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Moreover, the ability to overcome anoikis, a programmed cell death induced upon cell detach-

ment from the extracellular matrix (ECM), is also associated with the acquisition of a mesen-

chymal phenotype and confers an invasive cellular behavior [18].

Although changes in E-cadherin and other EMT-related markers have been reported in

OC, information on the relationship between their expression levels and tumor progression,

dissemination and aggressiveness is still limited and controversial [19, 20]. To address these

issues, the following studies were carried out: i) the expression and sub-cellular localization of

E-cadherin was characterized in an OC tissue microarray (TMA) by immunohistochemistry,

and results were associated with a set of clinicopathological parameters; ii) a molecular expres-

sion analysis of E-cadherin and EMT-related markers was done in 4 OC cell lines grown in

monolayers and under anchorage-independent conditions to mimic OC dissemination; iii) a

functional characterization was done in the 4 OC cell lines grown under anchorage-indepen-

dent conditions by evaluating cell death, adhesion, migration and invasion properties; iv) a

quantification analysis of E-cadherin and EMT-related markers mRNA expression levels

was done in tumor- and ascites-primary cultures derived from patients with advanced-stage

high-grade serous OC, and results were associated with disease aggressiveness and patient

prognosis.

Materials and methods

Materials

Chemicals. Chemicals were of analytical or tissue culture grade and purchased from

Sigma-Aldrich (Sigma; St. Louis, MO, USA). Molecular biology reagents were purchased from

Invitrogen-Life Technologies (Carlsbad, CA, USA) and Qiagen (Hilden, Germany). Electro-

phoresis reagents were products of BioRad (Richmond, CA, USA). The following antibodies

were used: anti E-cadherin a) 610181 (mouse, monoclonal; Becton Dickinson Biosciences

[BD], San Diego, CA, USA) and b) H-108 (rabbit, polyclonal; Santa Cruz Biotechnology

[SCBT], Santa Cruz, CA, USA); anti N-cadherin a) H63 (rabbit, polyclonal; SCBT) and b)

610920 (mouse, monoclonal; BD); anti β-catenin (E247; rabbit, monoclonal; Abcam, Cam-

bridge, UK); anti pan-cytokeratin (AE1/AE3; mouse, monoclonal; SCBT); anti poly-(ADP-

ribose) polymerase-1 (PARP-1) (H250; rabbit, polyclonal; SCBT); anti paxillin (610619;

mouse, monoclonal; BD); anti vimentin (clone V9; mouse, monoclonal; Dako, Glostrup, Den-

mark); anti actin (A2668; rabbit, polyclonal; Sigma); and anti β-tubulin (clone D66; mouse,

monoclonal; Sigma). For immunocytochemistry protocols, Alexa Fluor 488 or 555 goat-

labeled anti-mouse and anti-rabbit immunoglobulins G were used as secondary antibodies.

Anti-mouse (Vector Lab. Inc., Burlingame, CA, USA) or anti-rabbit (Sigma) immunoglobulins

G coupled to horseradish peroxidase were employed as secondary antibodies in Western

immunoblotting assays.

Patient samples. Tissue samples and ascites were obtained at the operating room from

OC patients who underwent surgery before receiving hormonal and/or chemotherapy treat-

ment at the Department of Gynecological Oncology of Vall Hebron Hospital, Barcelona,

Spain. The Institutional Review Board approved the protocol and a written informed consent

was obtained from all patients participating in the study. Clinical data was obtained from the

Gynecological Oncology database of the Department of Gynecological Oncology of Vall

Hebron Hospital. Cancer antigen 125 (CA125) levels (U/mL) were determined at the time of

diagnosis, prior to neither surgery nor chemotherapy. Platinum-free interval (PFI) was mea-

sured as the disease-free period (months) after the end of chemotherapy. All patients received

the same chemotherapy based on 6 cycles of a combination of paclitaxel and carboplatin

drugs.
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Studies were performed with both formalin-fixed paraffin-embedded (FFPE) and fresh OC

samples. FFPE samples retrieved from the Pathology Department of Vall Hebron Hospital

were collected between 1999 and 2008, and were used to construct a TMA, as previously

described [21]. Representative areas of 76 ovarian carcinomas (32 serous [42.1%], 13 mucinous

[17.1%], 14 endometrioid [18.4%], 11 clear cell [14.5%] and 6 undifferentiated [7.9%]) were

included. From the 76 FFPE tumor-tissue samples, 27 (35.5%) and 49 (64.5%) were graded as

low and high grade, respectively, based on tumor cell differentiation. Considering the Interna-

tional Federation of Gynecology and Obstetrics (FIGO) staging system, 48.7% of tumors

included in the TMA belonged to early stages (Stage I: 27 and Stage II: 10), while 51.3% were

classified as advanced stages (Stage III: 36 and Stage IV: 3). Moreover, a total of 6 fresh tumor-

tissue samples and 20 ascites derived from patients with advanced-stage high-grade serous OC

were collected at the Department of Gynecological Oncology of Vall Hebron Hospital between

2012 and 2014, and were processed to develop primary cell cultures.

For the in silico analysis, gene expression data generated by Agilent array technology was

obtained from the Ovarian Serous Cystadenocarcinoma database available at The Cancer

Genome Atlas (TCGA) data portal (https://cancergenome.nih.gov/). Sample data was down-

loaded from the UCSC Xena website (AgilentG4502A_07_3; https://xenabrowser.net/

datapages/?dataset=TCGA.OV.sampleMap/AgilentG4502A_07_3&host=https://tcga.

xenahubs.net; October 2016), processed, and selected output information was analyzed and

presented in this report.

Information of CDH1 somatic mutations identified in human epithelial ovarian tumors of

serous histology was retrieved from the Catalog Of Somatic Mutations In Cancer (COSMIC)

website (http://cancer.sanger.ac.uk/cosmic/browse/tissue-sn=ovary&ss=all&hn=all&sh=

serouscarcinoma&in=t&src=tissue&all_data=n; October 2016) and summarized in this report.

Cell lines. The TOV-112, SKOV-3, OAW-42 and OV-90 human OC cell lines (American

Type Culture Collection, Manassas, VA, USA) (Table 1) were selected to carry out standard

monolayer and anchorage-independent cell cultures.

Methods

Monolayer cell cultures. OC cell lines were cultured at 37˚C and 5% CO2 in air, following

supplier´s instructions and appropriate culture conditions (Table 1).

Primary cultures. For tissue-derived primary cultures, the surface of OC tumors was

scraped off, cells were placed in culture medium and centrifuged for 5 minutes at 1200 rpm.

The cell pellet was resuspended in 10% fetal bovine serum (FBS) MCDB105:M199 (Biological

Industries, Kibbutz Beit-Haemek, Israel) (1:1) culture medium supplemented with 1% penicil-

lin-streptomycin, and placed into a 6-well plate (Nunc-Thermo Scientific, Waltham, MA,

USA). To reduce fibroblast contamination, non-attached cells (epithelial cells) were placed

Table 1. General characteristics of OC cell lines.

OC Cell

Line

Tumor Type Source Culture Media

TOV-112 Ovarian Endometrioid Adenocarcinoma–High

Grade, Stage IIIC

Primary

tumor

MCDB105:M199 (1:1); supplemented with 10% Fetal Bovine Serum and 1%

Penicillin-Streptomycin

SKOV-3 Ovarian Adenocarcinoma Ascites McCoy’s 5A; supplemented with 10% Fetal Bovine Serum, 1% Penicillin-

Streptomycin, 0.1% Hepes and 0.7% Fungizone

OAW-42 Ovarian Adenocarcinoma Ascites DMEM High Glucose (4.5 g/L) with L-Glutamine; supplemented with 10% Fetal

Bovine Serum and 1% Penicillin-Streptomycin

OV-90 Ovarian Serous Papillary Adenocarcinoma–

High Grade, Stage IIIC

Ascites MCDB105:M199 (1:1); supplemented with 15% Fetal Bovine Serum and 1%

Penicillin-Streptomycin

https://doi.org/10.1371/journal.pone.0184439.t001
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into a new well 30 minutes later. After 7 days, the medium was changed and cell morphology

was monitored until 90% confluence, after which cells were frozen.

For ascites-primary cultures, the ascitic fluid was mixed 1:1 with MCDB105:M199 (1:1) cul-

ture medium supplemented with 10% FBS and 1% penicillin-streptomycin, placed in a T-75

flask (Nunc-Thermo Scientific) and incubated 7 days at 37˚C and 5% CO2 in air. Then, the

conditioned medium was removed to eliminate non-adherent cells (i.e. cells of the immune

system and blood) and replaced by fresh medium; ascitic cells were then handled as tumor-pri-

mary cultures.

Anchorage-independent cell cultures. OC cell lines were grown under anchorage-inde-

pendent conditions using 2 methodologies:

Hanging drop method. The procedure was done as previously described [22]. Briefly, adher-

ent cell monolayers were harvested, and cell suspensions were counted and subsequently

diluted to 1x105 cells/mL. Drops of 2000 cells in 20 μL were plated in the lid of a p100 dish and

cultured for up to 48 hours. Images were taken at 24 and 48 hours to evaluate cell morphology,

and analyzed using the Image J software (Wright Cell Imaging Facility, UHNR, CA, USA).

Forty-eight hour-aggregates were recovered for immunocytochemical and functional analyses.

Liquid overlay method. The assay was performed as previously reported [23]. Basically,

6-well plates were coated with 0.5% agarose (SeaKem LE agarose, Lonza, Basel, Switzerland) in

FBS-free medium and left at 4˚C during 30 minutes for solidification. A total of 8x105 cells

were seeded in each well. Forty-eight hour-aggregates were recovered for total RNA and pro-

tein analyses.

Immunohistochemistry. E-cadherin was detected by an indirect immunoperoxidase

assay in 76 OC tumors arranged in a TMA, as earlier described. For antigen retrieval, a 2 min-

ute-incubation at 115˚C in 10 mM citrate buffer (pH = 7.3) was done. Sections were incubated

with an anti E-cadherin antibody (610181; 5 μg/mL) for 1 hour at room temperature, followed

by a 30 minute-incubation with peroxidase-conjugated rabbit anti-mouse immunoglobulin G

(EnVision, Dako), and detected using the Envision Plus Detection System (Dako).

Two spots from different areas of each of the 76 OC tumors included in the TMA were

selected and evaluated by 2 highly-experienced pathologists. The intensity of the E-cadherin

protein signal was measured at the plasma membrane, cytoplasm and nucleus. Staining inten-

sity scores were assigned to each tumor evaluated, by applying a numerical scale ranging from

0 to 3, where 0 was assigned to lack of staining and 1 to 3 values were given to increasing

tumor staining intensities (1 lowest and 3 highest). The resulting scores were dichotomized

to analyze their relationship with the corresponding clinicopathological parameters (FIGO

staging, grade of differentiation and histology). The cut-off values were set from the statistical

distributions and the sensitivity/specificity of the receiver operating characteristic (ROC)

curves, in relation with their capability to differentiate clinicopathological variables, as follows:

Positive>1 and Negative�1 for the membranous and cytoplasmic subcellular localizations,

and Positive>0 and Negative = 0 for the nuclear staining. The total E-cadherin score was cal-

culated from the membranous, cytoplasmic and nuclear scores, and was considered positive

when a positive result was obtained for at least one of the subcellular localizations.

Fluorescence immunocytochemistry. OC cell lines grown in monolayers and 48 hour-

aggregates generated using the hanging drop method were fixed with 4% paraformaldehyde,

permeabilized in 0.1% Triton X-100, blocked with 3% bovine serum albumin (BSA) and sub-

jected to fluorescence immunocytochemistry. Briefly, fixed cell monolayers/aggregates were

placed 1 hour with an anti E-cadherin (H-108; 4 μg/mL), β-catenin (4 μg/mL), N-cadherin

(610920; 2.5 μg/mL) or paxillin (5 μg/mL) antibody, followed by one additional hour incuba-

tion with the secondary antibody. Nuclear cell staining was done with Hoechst 33342 (Sigma).

Images were acquired with a Nikon laser confocal microscope C1 (Tokyo, Japan; excitation
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lines: 488 nm and 544 nm, emission filters: 515–530 nm and 570-LP nm); images were

acquired using 20x and 40x objectives.

Sample preparation, SDS-PAGE and Western immunoblotting. Total protein cell

lysates were obtained from OC cell lines grown in monolayers and under anchored-indepen-

dent conditions, as previously reported [24]. Protein content was quantified (BioRad Protein

Assay), and protein extracts were subjected to SDS-PAGE in 8–12% polyacrylamide gels and

transferred onto nitrocellulose membranes (GE Healthcare, Buckinghamshire, UK). The

immunodetection protocol was done as earlier reported [24]. Briefly, membranes were

immersed in phosphate buffered saline (PBS) buffer containing 0.02% Tween-20 (v/v), and

supplemented with 10% skim milk (w/v) for 1 hour at room temperature in order to block

membrane non-specific sites. Membranes were then incubated overnight at 4˚C in the pres-

ence of specific antibodies diluted in blocking buffer (anti E-cadherin 610181: 0.25 μg/mL; anti

N-cadherin H-63: 2 μg/mL; anti vimentin: 2 μg/mL; anti pan-cytokeratin: 2 μg/mL; anti

PARP-1: 1 μg/mL; anti actin: 0.27 μg/mL; and anti β-tubulin: 0.05 μg/mL). As secondary anti-

bodies, anti-mouse or anti-rabbit immunoglobulins G coupled to horseradish peroxidase were

diluted in blocking buffer (0.4 mg/mL) and incubated 1 hour at room temperature. The anti-

body binding was revealed with the ECL Western Blotting Detection Kit (GE Healthcare), fol-

lowing the manufacturer´s instructions. Replicates of 3 experiments were obtained and a

densitometric analysis of the bands was performed using the Image J software, when indicated.

A representative image of each experiment is shown.

RNA extraction, cDNA synthesis, standard and quantitative real time PCR. OC cell

lines grown in monolayers and under anchored-independent conditions, as well as OC tumor-

and ascites-primary cultures, were subjected to total RNA purification (All Prep DNA/RNA

mini Kit, Qiagen). Then, total RNA was subjected to a reverse transcriptase reaction using the

Superscript III enzyme (Invitrogen), and standard and quantitative PCR protocols were car-

ried out as previously reported [24]. Transcript expression levels for all genes evaluated in this

study were estimated by the 2-ΔCt calculation, where ΔCt = (Ct gene under study–Ct endoge-

nous gene). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was considered as the

housekeeping gene in all cases.

E-cadherin mRNA levels were similar when individual or pooled cell lines from 3 repli-

cates were compared (S1 Fig). Therefore, pooled samples were analyzed in the following

experiments.

Wound healing assay. The wound healing assay was done with OC cell lines as previously

reported [21]. Images were taken and analyzed using the Image J software. The wound area

(wa; mm2) recorded at the initial time (wat0) and at 4, 8, 12, 24 and 48 hours (watx), were used

to calculate the percentage (%) of wound healing as [(wat0-watx)/wat0]x100, where 100% is

the maximum migratory rate.

Cell death analysis. Forty eight hour-aggregates were obtained by the hanging drop

method. In each assay, 40 drops/cell line were collected, centrifuged, trypsinized to allow cell

disaggregation and incubated 5 minutes with 5 μL of propidium iodide (PI) (BD). The total

number of cells was counted using a phase contrast microscope and dead cells were scored

under fluorescence microscopy. The percentage (%) of cell death was calculated as the ratio

between PI-stained cells and the total number of cells.

Adhesion assay. Forty eight hour-aggregates from the 4 OC cell lines were generated

using the hanging drop method. In each assay, 40 drops/cell line per condition were collected,

seeded into fibronectin- and collagen I-coated coverslips, and allowed to adhere for 2 hours.

Adhered aggregates were fixed, stained with crystal violet and photographed. The number of

aggregates adhered to both ECM was manually quantified using the FSX100 microscope

E-cadherin and ovarian cancer aggressiveness and prognosis
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(Olympus, Tokyo, Japan) and the Image J software. At least 4 random fields per coverslip were

evaluated for each cell line in each condition.

Disaggregation assay. The disaggregation assay was performed as previously described

[25]. Briefly, 96-well plates coated with fibronectin and collagen I ECM were blocked with 1%

BSA in PBS for 30 minutes. One 48 hour-cell aggregate generated using the hanging drop

method was seeded per well. Aggregates were photographed using the FSX100 microscope

(Olympus) at 1, 3, 6, 9, 24 and 30 hours. The pixel area of cell aggregates was manually calcu-

lated at each time using the Image J software. The fold change in the area was estimated divid-

ing the aggregate pixel area at 3, 6, 9, 24 and 30 hours by the corresponding value at 1 hour,

established as the initial time (t = 0). The average percentage increase in the surface area from

at least 4 aggregates was calculated and plotted.

In addition, immunodetection of paxillin in 24 hour-cell aggregates interacting with fibro-

nectin and collagen I ECM was performed as described above.

3D-Matrigel™ invasion assay. Forty μL of Matrigel™ (BD) were pipetted into each well of

a 96-well plate and incubated 30 minutes at 37˚C. Five 48 hour-cell aggregates from each of

the 4 OC cell lines generated by the hanging drop method were seeded per well and other

40 μL of Matrigel™ were added into each well. Cell aggregates were grown at 37˚C and 5% CO2

in air, and photographed with a FSX100 microscope (Olympus) for 7 days.

CA125 and PFI assessments. CA125 serum levels were evaluated by a standard immuno-

assay protocol at the Department of Gynecological Oncology of Vall Hebron University Hos-

pital, Barcelona, Spain [26]. The cut-off value selected for monitoring treatment response was

500 U/mL [27]. The PFI was set at 6 months, a time period established to distinguish chemo-

therapy responsive (more than 6 months) or resistant (less than 6 months) patients.

Statistical analysis. All experiments were run in triplicates. Results are expressed as

mean ± standard error of the mean (SEM). A p<0.05 value was considered statistically signifi-

cant in all cases. The one-way analysis of variance (ANOVA) and student t tests were applied

to compare mean values of mRNA and/or protein expression levels, and the nonparametric

Spearman’s rho test was used to analyze correlations in human samples.

The relationship between membranous, cytoplasmic, nuclear and total E-cadherin expres-

sion levels with clinicopathological parameters of the ovarian tumors included in the TMA

was evaluated using the Fisher´s exact and chi-square tests. To analyze the potential value of

membranous and total E-cadherin staining to differentiate clinicopathological parameters, a

univariate logistic regression (LR) analysis was conducted and the odds ratio (OR) and confi-

dence intervals established at 95% were calculated.

Statistical analyses were performed using the Statistical Package for Social Science software

versions 16.0 and 21.0 (New York, NY, USA). For graphical images the GraphPad 5.0 software

was used, and figures were performed with the Adobe Photoshop™ CS5 software.

Results

Expression of E-cadherin in an OC TMA and its relationship with

clinicopathological parameters

To study the relationship between E-cadherin and main clinicopathological parameters in

ovarian tumor samples, the expression and subcellular localization of the adhesion protein was

evaluated in an OC TMA. Representative images of E-cadherin staining are shown for high-

grade ovarian tumors (Fig 1A), as wells as for early- and advanced-stage tumors (S2A Fig), of

different histological types.

Among OC samples analyzed, 53.4% were positive for total E-cadherin, while 35.5%

showed a membranous E-cadherin signal (S2B and S2C Fig).
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Fig 1. Immunohistochemical analysis of E-cadherin expression in a human OC TMA and its

relationship with clinicopathological parameters. (A) E-cadherin immunodetection in a human OC TMA.

Representative 100x magnification images are shown for high-grade tumors of different histological types. (B

and C) Quantitative analysis (%) of (B) total and (C) membranous E-cadherin expression (Positive: black;

Negative: white) in ovarian tumor tissues classified by FIGO stages. (D and E) Quantitative analysis (%) of (D)

total and (E) membranous E-cadherin expression (Positive: black; Negative: white) in ovarian tumor tissues

classified by histological types. (F) Univariate LR analysis of total and membranous E-cadherin expression

levels versus FIGO stages (Advanced/Early Stages) and histological types (Serous/Others).

https://doi.org/10.1371/journal.pone.0184439.g001
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The analysis performed between E-cadherin expression and clinicopathological parameters

revealed a significant decrease in total and membranous E-cadherin staining with increased

FIGO stage (p = 0.017 and p = 0.027, respectively), reaching 66.7% and 100% negative staining

in Stage IV tumors, respectively (S2B and S2C Fig, Fig 1B and 1C). In line with these findings,

advanced-stage tumors showed lower E-cadherin levels than early-stage tumors for both total

and membranous protein (p = 0.019 and p = 0.030, respectively; S2B and C Fig). With regard

to tumor histology, total E-cadherin expression varied significantly among different types

(p = 0.023), being lowest in serous (31.0%) and highest in endometrioid (78.6%) tumors (S2B

Fig and Fig 1D). Similarly, for membranous E-cadherin significant differences (p = 0.028)

were observed among histologies, finding lowest levels in serous tumors (15.6%) and highest

levels in tumors with clear cell histology (54.5%) (S2C Fig and Fig 1E). When the expression

of the adhesion protein was analyzed with regard to tumor grade, no significant differences

were found for total (p = 0.808) and membranous E-cadherin (p = 0.464) (S2B and S2C Fig).

For the other cellular localizations, no significant differences were observed between cyto-

plasmic E-cadherin staining and tumor stage (p = 1.000), histology (p = 0.311) and grade

(p = 1.000) (S2C Fig). On the other hand, nuclear E-cadherin staining was found associated

with tumor grade (p = 0.041), showing a higher signal in low-grade compared to high-grade

tumors (26.9% versus 8.2%, S2E Fig).

To study the value of assessing total and membranous E-cadherin protein expression in the

OC TMA, univariate LR analyses were performed. As a result, both negative membranous and

total E-cadherin expression were validated as prognostic markers to discriminate advanced-

from early-stage tumors, and serous histology among others. However, membranous E-cad-

herin was found more sensitive (76.9%) than total E-cadherin (61.1%) to identify advanced-

from early-stage tumors, and to discriminate the serous histology among other histological

subtypes (84.4% versus 69.0%, respectively). On the other hand, membranous E-cadherin was

less specific than total E-cadherin staining for both FIGO stage (48.6% versus 67.6%) and

tumor histology (50.0% versus 68.2%) (Fig 1F).

Evaluation of mechanisms involved in the regulation of E-cadherin

expression levels in human serous ovarian tumors

Considering that serous ovarian tumors depicted the lowest levels of E-cadherin among tumor

subtypes included in the TMA (Fig 1D and 1E), the occurrence of somatic mutations and the ex-

pression of transcriptional E-cadherin repressor factors were evaluated in tumors of this histology.

Firstly, the COSMIC portal of somatic mutations in cancer was used to retrieve the muta-

tions listed in the CDH1 gene. Within the 737 serous ovarian tumors evaluated only 2 (0.27%)

mutations were reported, being both substitution missense mutations that lead to changes in

amino acid residues located in the E-cadherin extracellular domain.

In addition to these studies, the mRNA expression levels of E-cadherin and the transcrip-

tional repressors Twist, Snail, Slug and ZEB1, were evaluated in serous ovarian tumors of dif-

ferent FIGO stages from the information available at the TCGA data portal. Within a total of

564 tumor-tissue samples processed and analyzed, 534 entries were from primary tumors, 42

of which were from early stages and 492 from advanced stages. A large variability was observed

for E-cadherin mRNA levels among samples of each group (Fig 2A). In any case, E-cadherin

transcript expression showed a trend toward decreased levels in advanced-stage tumors

when compared to early-stage tumors (Stages I-II: 0.08991 ± 0.1081; Stages III-IV: 0.01496 ±
0.03958; p = 0.7885). This trend was in line with results of E-cadherin protein signal in the OC

TMA (Fig 1B and 1C). Moreover, a significant increase in the levels of Twist (p<0.001), Slug

(p<0.01) and ZEB1 (p<0.05) repressors was observed in Stages III-IV tumors compared with
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those of Stages I-II (Fig 2B, 2D and 2E). In contrast, Snail transcript levels were not signifi-

cantly different (p = 0.2692, Fig 2C) among samples.

Expression analyses of E-cadherin and EMT-related markers in OC cell

lines. Its relationship with cell migration capacity

To further understand the implications of E-cadherin expression in OC progression, a set of

studies were done with the OC cell lines TOV-112, SKOV-3, OAW-42 and OV-90. None of

these cells were reported to have somatic mutation on CDH1 [28]. A morphological analysis

revealed striking differences among them: whereas TOV-112 and SKOV-3 cells showed spin-

dle-shaped morphology with branched cytoplasm and low cellular contacts distinctive of fibro-

blast-like cells, OAW-42 and OV-90 cells depicted a more cuboidal shape with continuous cell-

cell contacts and few intercellular spaces, a typical characteristic of epithelial cells (Fig 3A).

Fig 2. Expression analysis of E-cadherin, Twist, Snail, Slug and ZEB1 mRNA levels in early- and

advanced-stage human serous ovarian tumors. (A) Quantitative real time PCR analysis of E-cadherin

mRNA expression. GAPDH was used as endogenous control (ns: no significant). (B-E) Transcript expression

levels of (B) Twist, (C) Snail, (D) Slug and (E) ZEB1 transcriptional repressors assessed in early- (Stages I-II)

versus advanced-stage (Stages III-IV) serous ovarian tumors by quantitative real time PCR. Expression data

correspond to the TCGA Ovarian Serous Cystadenocarcinoma database (***p<0.001, **p<0.01, *p<0.05,

ns: no significant).

https://doi.org/10.1371/journal.pone.0184439.g002
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When E-cadherin expression was analyzed by Western immunoblotting, TOV-112 cells

depicted the lowest level of the 120 kDa full length (FL) form, while OAW-42 and OV-90 cells

showed higher expression of E-cadherin than SKOV-3 cells (Fig 3B). In agreement with these

findings, immunocytochemical analysis of E-cadherin revealed no detectable levels of the adhe-

sion protein in TOV-112 cells, mislocalization to the cellular cytoplasm in SKOV-3 cells, and

plasma membrane localization in OAW-42 and OV-90 cells (Fig 3C). Immunodetection of β-

catenin showed plasma membrane localization of the adaptor protein in all cell lines expressing

E-cadherin, as well as at the cytoplasm of TOV-112, SKOV-3 and OAW-42 cells (Fig 3C).

When analyzed at mRNA level, a lower E-cadherin expression was observed in TOV-112 com-

pared to OV-90 and OAW-42 cells (p<0.001 and p<0.01, respectively), and in SKOV-3 com-

pared to OV-90 cells (p<0.01) (Fig 3D), in line with their E-cadherin protein levels (Fig 3B).

Based on these results, the expression of the E-cadherin transcriptional repressors Twist,

Snail, Slug and ZEB1 was evaluated by quantitative real time PCR (Fig 3E). Whereas Twist

showed the highest expression in TOV-112 (p<0.01), Slug and ZEB1 mRNA levels were high-

est in SKOV-3 cells (p<0.01). Furthermore, Snail depicted the highest expression levels in

OV-90 cells (p<0.05) despite the high levels of the adhesion protein, suggesting a lack of E-

cadherin regulation by this repressor in this cell line.

In addition to these evaluations, the expression of N-cadherin was studied in the above-

mentioned OC cell lines. By Western immunoblotting, the 135 kDa FL N-cadherin form was

detected in TOV-112, SKOV-3 and OAW-42 cell lines at variable levels, being the highest in

SKOV-3 cells (Fig 3F). Moreover, N-cadherin was immunolocalized at the cell membrane and

cytoplasm of TOV-112, SKOV-3 and OAW-42 cells, while OV-90 showed no N-cadherin sig-

nal (Fig 3G). The same trend was observed for the N-cadherin transcript, showing highest lev-

els in SKOV-3 cells (p<0.01) (Fig 3H). When the relative expression of E- to N-cadherin was

analyzed at protein and mRNA levels, these molecules showed a distinct proportion in the 4

cell lines (Fig 3I). To further characterize the molecular phenotype, the expression of cytokera-

tins (epithelial markers) and vimentin (mesenchymal marker) was also evaluated by Western

immunoblotting in the OC cell lines (Fig 3J). As a result, TOV-112 cells expressed high levels

of vimentin and OV-90 depicted high levels of cytokeratins, while SKOV-3 and OAW-42 cells

showed high expression levels of both markers.

The expression levels of E- and N-cadherin, together with cytokeratins and vimentin (EMT

profile), led us to classify the OC cell lines as mesenchymal (M; TOV-112), intermediate (I;

SKOV-3 and OAW-42) and epithelial (E; OV-90). Furthermore, SKOV-3 and OAW-42 cells

were sub-classified as intermediate mesenchymal (IM; SKOV-3) and intermediate epithelial

(IE; OAW-42), based on the E- and N-cadherin levels. These phenotypes were previously

described by Wang and collaborators [29], although using different criteria.

Since the expression of mesenchymal markers has been associated with a more motile and

invasive cell behavior [12], the migration capacity of cell lines was evaluated by the wound-

healing assay. Consistent with the previous results, a statistical analysis revealed higher migra-

tion rates for TOV-112 and SKOV-3 than for OAW-42 at 4 hours (p = 0.001), and for OAW-

42 and OV-90 cells at 8, 12 and 24 hours (p<0.001) (Fig 3K). Moreover, M (TOV-112) and

IM (SKOV-3) cells were able to close the wound within 24 hours (Fig 3K), while IE (OAW-42)

and E (OV-90) cells needed additional 24 hours to heal the lesion (S3 Fig).

Aggregation and survival of OC cell lines grown under anchorage-

independent conditions

OC dissemination involves primary tumor cell exfoliation, release into the peritoneal cavity

and survival. These cells can also form multicellular aggregates in suspension and then give
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Fig 3. Expression analyses of E-cadherin and EMT-related markers in TOV-112, SKOV-3, OAW-42 and

OV-90 OC cell lines. Assessment of their migration capacity. (A) Phase contrast images of cell lines grown in

monolayers (100x magnification, scale bar 100 μm). (B) Western immunoblotting of the 120 kDa E-cadherin full

lenght form. Actin was included for total protein loading control. (C) Immunofluorescence analyses of E-cadherin

(top) and β-catenin (bottom) (400x magnification, scale bar 20 μm). Image of Hoechst 33342 nuclear staining was

included for TOV-112 cells. (D) Standard (top) and quantitative real time (bottom) PCR analyses of E-cadherin

mRNA expression. GAPDH was used as endogenous control (***p<0.001, **p<0.01). (E) mRNA expression
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rise to a metastatic implant [4]. Based on this background information, TOV-112, SKOV-3,

OAW-42 and OV-90 cells were grown under anchorage-independent conditions by the hang-

ing drop method to mimic this dissemination process. As shown in S4 Fig, TOV-112, SKOV-3

and OV-90 cell lines aggregated in large multicellular structures at 24 hours, which converged

in a single one after 48 hours. In contrast, OAW-42 cells did not form single large structures at

any time evaluated; instead, small-scattered aggregates were found at 24 hours (S4 Fig) and

“grape-like” aggregates of irregular shape were observed after 48 hours. Representative images

of the 48 hour-multicellular structures for all cell lines are shown in Fig 4A. The area and the

number of aggregates were analyzed in four 48 hour-drops of each cell line (Fig 4B).

Despite the ability of TOV-112, SKOV-3 and OV-90 cells to form a single aggregate after 48

hour culture, cell compaction appeared slightly different between TOV-112 and OV-90 com-

pared with SKOV-3 cells. While smooth contoured structures with tightly packed cells and

lack of intercellular spaces was observed in IM (SKOV-3) cells, less compacted aggregates were

found in the other cell lines. Furthermore, the E (OV-90) cell drops showed a higher number

of single cells, suggesting a lower capacity to maintain the aggregate structure for this cell line

(Fig 4A).

To better understand the molecular basis of these OC cell-aggregates, the expression of E-

and N-cadherin (protein and mRNA levels), cytokeratins and vimentin (protein level), were

evaluated (Fig 4C–4E). Protein expression assessed by Western immunoblotting and immu-

nofluorescence analyses (Fig 4C and 4E, respectively) showed the same phenotypes in the cell-

aggregates as in cells grown in monolayers. Regarding mRNA studies, E- and N-cadherin

expression profiles were comparable among the different cell lines grown in both conditions

(Fig 4D versus Fig 3D and 3H).

To characterize the aggregates behavior, cell death was evaluated by means of 2 experimen-

tal approaches. When the percentage (%) of cell death in 48 hour-aggregates was determined

by the PI assay, aggregates of TOV-112 and SKOV-3 cells showed lower percentage of dead

cells (28.9% and 22.1%, respectively) than OAW-42 and OV-90 cell lines (52.6% and 55.2%,

respectively) (p<0.001) (Fig 4F). On the other hand, among cell aggregates depicting the high-

est survival rates, those derived from IM cells showed a lower (p<0.05) cell death than those

with an M phenotype. Representative images of phase contrast and PI-stained cells from the

disaggregated structures are also shown (Fig 4F).

As a second approach, the expression of PARP-1 protein was evaluated (Fig 4G). Since

PARP-1 is cleaved by caspases in cells undergoing apoptosis, presence of the 116 kDa FL and

the 89 kDa cleaved PARP-1 forms was analyzed. When the proportion of cleaved to FL PARP-

1 was plotted, TOV-112 and SKOV-3 showed a lower percentage of cleaved PARP-1 (16.6%

and 7.9%, respectively) than OAW-42 and OV-90 aggregates (35% and 35.5%, respectively).

Interestingly, between aggregates with a mesenchymal-like phenotype, those from IM (SKOV-

3) cells exhibited the lowest rate of PARP-1 cleavage, in line with results from the PI assay.

levels of Twist, Snail, Slug and ZEB1 transcriptional repressors assessed by quantitative real time PCR

(**p<0.01, *p<0.05). (F) Western immunoblotting analysis of N-cadherin. β-tubulin served as total protein

loading control. (G) Fluorescent immunocytochemistry analysis of N-cadherin (400x magnification, scale bar

20 μm). Image of Hoechst 33342 nuclear staining was included for OV-90 cells. (H) Expression analysis of N-

cadherin mRNA by both standard (top) and quantitative real time (bottom) PCR. GAPDH was used as

endogenous control (**p<0.01). (I) Protein (left) and mRNA (right) relative expression (%) of E-cadherin (black)

versus N-cadherin (white) in the 4 cell lines. (J) Western immunoblotting of pan-cytokeratin and vimentin. β-

tubulin was included as total protein loading control. (K) Scratch-wound healing assay at 0, 4, 8, 12 and 24 hours.

A graphical representation of wound healing values (%) as a function of time (h) is shown. A statistical analysis of

OC cell lines migration rates at 4, 8, 12 and 24 hours was also included, considering the TOV-112 cell line as

reference.

https://doi.org/10.1371/journal.pone.0184439.g003
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Fig 4. Expression analyses of E-cadherin and EMT-related markers in OC cell lines grown under

anchorage-independent conditions. Assessment of their aggregation and survival capacities. (A) Phase

contrast images of 48 hour-aggregates (100x and 200x magnifications). (B) Plot of the area (px2: pixeles2) and

number (black spots) of 48 hour-aggregates in 4 drops of each cell line. (C) Western immunoblotting analyses of

E-cadherin, N-cadherin, pan-cytokeratin and vimentin in 48 hour-aggregates. β-tubulin served as total protein

loading control. (D) Quantitative real time PCR analyses of E-cadherin and N-cadherin mRNA expression levels

in 48 hour-aggregates. (E) Fluorescent immunocytochemistry analysis of E-cadherin and N-cadherin in 48 hour-

aggregates (400x magnification). A merge image of both cadherins is also included. (F) Cell death assessed by

means of PI staining in 48 hour-aggregates. Images were taken using an inverted microscope with phase

contrast and red fluorescence after PI staining of disaggregated cells (100x magnification) (top). Cell death (%)

was plotted (bottom) (***p<0.001). (G) Western immunoblotting analysis of PARP-1 on 48 hour-aggregates

(left). Relative expression (%) of cleaved versus FL PARP-1 form (right).

https://doi.org/10.1371/journal.pone.0184439.g004
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Adhesion, disaggregation and invasion capacity of OC cell aggregates

Since OC dissemination involves adhesion, disaggregation and invasion of cell aggregates at

local pelvic and abdominal organs [30], the adhesion capacity of 48 hour-aggregates from OC

cell lines to fibronectin and collagen I was initially evaluated.

TOV-112 and SKOV-3 showed a higher number of aggregates adhered to fibronectin com-

pared to OAW-42 and OV-90 (p<0.001). Among the mesenchymal-like aggregates, those

derived from IM (SKOV-3) cells showed the highest adhesion capacity to collagen I (p<0.001)

(Fig 5A).

To assess disaggregation after adhesion to both ECM, the area of the aggregate structures

was recorded over time up to 30 hours. Representative images of disaggregation of a SKOV-3

aggregate onto collagen I are shown in Fig 5B. As a result, IM cell-aggregates displayed the

largest area onto collagen I at 24 hours (p<0.01; S5 Fig) and onto both ECM at 30 hours

(Fibronectin: p<0.05; Collagen I: p<0.01) (Fig 5B and S5 Fig). In addition, after 24 hours of

interaction between aggregates and both ECM, immunolocalization analysis of paxillin

revealed the presence of this protein in aggregates from all OC cell lines (Fig 5C). Paxillin is a

focal adhesion protein involved in the structural link between ECM and the actin cytoskeleton

[31]. Thus, despite being adhered, TOV-112, OAW-42 and OV-90 aggregates do not have the

ability to disseminate onto the ECM.

To further evaluate the invasive behavior of cell aggregates, the 3D-MatrigelTM assay was

performed. Representative images of 2 and 7 day-aggregates from OC cell lines into Matri-

gelTM are shown in Fig 5D. No signs of invasion were observed in OAW-42 and OV-90 aggre-

gates at any time analyzed. In contrast, while TOV-112 aggregates showed individual cells

randomly spreading out of them, SKOV-3 structures displayed typical invasive branches [32].

Evaluation of E-cadherin and EMT-related markers in human serous

ovarian tumor- and ascites-primary cultures

In order to translate these in vitro findings to the bedside, E-cadherin, N-cadherin, cytokeratin

19 and vimentin mRNA expression levels were evaluated in 6 tumor- and 20 ascites-primary

cultures derived from patients diagnosed with advanced-stage high-grade serous OC (Tables 2

and 3).

The 4 mRNAs were detected in all samples analyzed. Regarding E-cadherin expression, a

trend towards a higher mean value in ascites compared to tumors (0.010201 versus 0.006153;

1.66x) was found. In contrast, differences not higher than 0.25x were observed in the mean

value of N-cadherin (0.205857 versus 0.273719; 0.75x), cytokeratin 19 (0.123716 versus

0.168510; 0.73x) and vimentin (0.371260 versus 0.316905; 1.17x) mRNA levels in ascites versus

tumors (Fig 6A, Tables 2 and 3).

Among ascites, when the relative abundance of both cadherins was calculated for each sam-

ple, a higher proportion of N- to E-cadherin mRNA was observed in all cases (Fig 6B). E-cad-

herin mRNA levels showed a large dispersion among samples, with values that ranged from

0.00011 to 0.03269 (297x increase). In contrast, N-cadherin levels varied up to a 3.71x increase

(from 0.08597 to 0.31864) (Fig 6C and Table 3). On the other hand, whereas cytokeratin 19

mRNA values varied more than one hundred times (from 0.00355 to 0.52668; a 148.36x

increase), vimentin values increased up to 5.06 times (from 0.14210 to 0.71947) (Fig 6D and

Table 3).

Since in the ascitic samples a large dispersion of mRNA values was only observed for the

epithelial markers E-cadherin and cytokeratin 19, the relationship between these values and

those of 2 clinicopathological parameters indicative of OC aggressiveness (CA125 and PFI)

was evaluated by performing a correlation analysis. As a result, only E-cadherin mRNA levels
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showed a significant correlation with both CA125 and PFI values (E-cadherin: CA125:

r = 0.5113, p = 0.0212 and PFI: r = -0.4883, p = 0.0289; cytokeratin 19: CA125: r = -0.09925,

p = 0.6772 and PFI: r = 0.2011, p = 0.3953). Moreover, considering the median value

Fig 5. Assessment of adhesion, disaggregation and invasion capacity of OC cell lines grown under

anchorage-independent conditions. (A) Representative phase contrast images of 48 hour-aggregates (black

spots) placed onto fibronectin and collagen I matrices (40x magnification) (left). The number (#) of aggregates

adhered to each matrix (Fibronectin: white, Collagen I: black) after 2 hour-incubation was plotted (right)

(***p<0.001). (B) Representative phase contrast images of the area of an SKOV-3 aggregate placed onto

collagen I over time (0, 6, 9, 30 hours) are shown (left) (100x magnification). Estimated area (px2: pixeles2) of 48

hour-aggregates placed onto fibronectin (white) and collagen I (black) for 30 hours (right) (**p<0.01, *p<0.05).

(C) Phase contrast images and immunofluorescence analysis of paxillin in 48 hour-aggregates placed onto

fibronectin and collagen I for 24 hours (200x and 400x magnification, respectively). (D) Phase contrast images of

48 hour-aggregates 2 and 7 days after placing them into MatrigelTM (200x magnification).

https://doi.org/10.1371/journal.pone.0184439.g005
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(median = 0.00679) of E-cadherin mRNA levels, samples were divided in 2 groups: low

(A1-A10) and high (A11-A20) E-cadherin expression. Samples with lower E-cadherin levels

than the median value showed CA125 levels less than 500 U/mL in 7/10 cases and PFI greater

than 6 months in 7/10 cases. Contrasting, those with E-cadherin mRNA expression higher

than the median value were associated to CA125 levels greater than 500 U/mL in 7/10 cases

and a PFI less than 6 months in 7/10 cases (Table 4).

Discussion

OC is frequently referred to as a “silent killer”, because most cases are diagnosed at advanced

stages when the tumor has already metastasized into the peritoneal cavity. Several studies have

described the deregulation of E-cadherin mediated cell-cell adhesion and EMT-related mole-

cules in OC progression and dissemination [19, 33, 34]. However, no conclusive findings have

been reported on the impact of their expression in tumor agressiveness and patient prognosis.

The present study was focused on the characterization of E-cadherin expression levels in

human ovarian tumors to relate them with the main clinicopathological parameters. In

Table 2. E-cadherin, N-cadherin, cytokeratin 19 and vimentin mRNA expression levels in human ovarian tumor-primary cultures.

Sample E-cadherin 2^(-ΔCt) N-cadherin 2^(-ΔCt) Cytokeratin 19 2^(-ΔCt) Vimentin 2^(-ΔCt)

Primary Tumor 0.001987 0.206613 0.212421 0.411796

Primary Tumor 0.002850 0.246558 0.547147 1.172835

Primary Tumor 0.003594 0.357249 0.012736 0.020617

Primary Tumor 0.004143 0.326465 0.017337 0.049037

Primary Tumor 0.011203 0.343885 0.214641 0.230047

Primary Tumor 0.013139 0.161544 0.006778 0.017098

https://doi.org/10.1371/journal.pone.0184439.t002

Table 3. E-cadherin, N-cadherin, cytokeratin 19 and vimentin mRNA expression levels in human OC ascites-primary cultures.

Sample Sample Name E-cadherin 2^(-ΔCt) N-cadherin 2^(-ΔCt) Cytokeratin 19 2^(-ΔCt) Vimentin 2^(-ΔCt)

Ascites A1 0.000114 0.166662 0.022000 0.280292

Ascites A2 0.000369 0.171943 0.202000 0.524858

Ascites A3 0.000750 0.288172 0.091500 0.380245

Ascites A4 0.000883 0.129408 0.044800 0.539614

Ascites A5 0.001084 0.291183 0.091800 0.441351

Ascites A6 0.003023 0.210224 0.265000 0.523042

Ascites A7 0.003460 0.250868 0.153000 0.580352

Ascites A8 0.005411 0.208050 0.049037 0.240649

Ascites A9 0.005921 0.294227 0.526681 0.719467

Ascites A10 0.006592 0.318640 0.203768 0.458502

Ascites A11 0.006992 0.127627 0.042986 0.299370

Ascites A12 0.007652 0.141610 0.031034 0.188809

Ascites A13 0.008549 0.175556 0.423373 0.246558

Ascites A14 0.008881 0.235696 0.102238 0.558644

Ascites A15 0.011883 0.085971 0.022021 0.142102

Ascites A16 0.017337 0.168404 0.003545 0.326465

Ascites A17 0.025916 0.218393 0.089622 0.381565

Ascites A18 0.026645 0.158769 0.052922 0.222982

Ascites A19 0.029873 0.180491 0.038607 0.199575

Ascites A20 0.032690 0.295248 0.018389 0.170755

https://doi.org/10.1371/journal.pone.0184439.t003
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addition, the expression levels of 4 EMT-markers (E-cadherin, N-cadherin, cytokeratin 19 and

vimentin) were evaluated in human OC ascites- and tumor-primary cultures. These markers

were selected based on the molecular and functional characterization of an in vitro model

Fig 6. Expression analyses of E-cadherin and EMT-related markers in human advanced-stage high-grade

serous OC tumor- and ascites-primary cultures. (A) mRNA expression levels of E-cadherin, N-cadherin,

cytokeratin 19 and vimentin, assessed in 6 OC tumor- versus 20 ascites-primary cultures by quantitative real time

PCR (ns: not significant). (B) mRNA relative expression (%) of E-cadherin (black) versus N-cadherin (white) in 20

ascites-primary cultures. (C and D) Quantitative real time PCR analyses of (C) E-cadherin (top) and N-cadherin

(bottom), and (D) cytokeratin 19 (top) and vimentin (bottom), mRNA expression levels in 20 ascites-primary

cultures.

https://doi.org/10.1371/journal.pone.0184439.g006
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carried out using cell lines grown under anchorage-independent conditions, an experimental

approach that resembles OC dissemination into the peritoneal cavity. To evaluate their impact

in tumor aggressiveness, the relationship between mRNA expression levels of the selected

EMT-markers and patient prognosis, measured by means of CA125 levels and PFI, was

determined.

Firstly, E-cadherin protein levels and subcellular localization were evaluated by immuno-

histochemistry in 76 human ovarian tumors arranged in a TMA. A relationship between total

and membranous E-cadherin low levels and OC poor prognosis was observed, in line with pre-

vious studies [35, 36]. In fact, both E-cadherin measurements were found to be good markers

to differentiate between advanced- and early-stage ovarian tumors. Moreover, they differenti-

ated serous tumors, the most frequent and aggressive histological type, from other histologies,

in agreement with a recent study using an OC TMA that evaluated only the membranous E-

cadherin signal [37]. Unlike total and membranous E-cadherin expression, no relationship

was found between cytoplasmic localization and any clinicopathological parameter analyzed.

Furthermore, nuclear E-cadherin expression was associated only with tumor grade, finding a

higher proportion of low-grade tumors depicting this signal than high-grade tumors. In this

regard, some authors have reported the association of an aberrant nuclear E-cadherin signal

with a negative regulation of the Wnt/β-catenin pathway and a better prognosis in other carci-

nomas [38]. Finally, our study is the first one reporting results on sensitivity and specificity

data analyses, which revealed the importance on the assessment of both total and membranous

E-cadherin expression to distinguish advanced versus early ovarian tumors, as well as serous

tumors from other histological types.

The decreased E-cadherin protein expression observed in advanced- versus early-stage

serous ovarian tumors was also revealed at transcript level in a TCGA database of over 500

cases. These findings could be associated, at least in part, with a significant increase in Twist,

Table 4. E-cadherin mRNA expression, CA125 levels and PFI in OC ascites.

Sample Name E-cadherin 2^(-ΔCt) CA125 (U/mL) PFI (months)

A1 0.000114 72 9

A2 0.000369 559 14

A3 0.000750 112 7

A4 0.000883 42 10

A5 0.001084 223 14

A6 0.003023 82 26

A7 0.003460 217 18

A8 0.005411 1217 4

A9 0.005921 4857 2

A10 0.006592 417 6

A11 0.006992 123 4

A12 0.007652 6049 4

A13 0.008549 26 < 3

A14 0.008881 7416 10

A15 0.011883 363 3

A16 0.017337 777 < 3

A17 0.025916 908 9

A18 0.026645 1560 during treatment

A19 0.029873 760 1

A20 0.032690 580 14

https://doi.org/10.1371/journal.pone.0184439.t004
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Slug and ZEB1 mRNA levels with tumor progression, in accordance with reports that describe

the expression of these E-cadherin transcriptional repressors in OC [39–41]. Taking into

account the low rate of somatic mutations found in over 700 ovarian serous tumors listed in

COSMIC, transcriptional regulation of E-cadherin levels is a relevant mechanism in OC

progression.

The low E-cadherin expression observed in advanced-stage tumors would be in favor of

OC dissemination by direct extension of tumor cells into the peritoneal cavity. Nevertheless,

the relationship between E-cadherin levels and malignancy of detached OC cells is yet contro-

versial: both high and low E-cadherin expression levels have been described [20, 29, 42–44].

To address this issue, an in vitro model was established using the TOV-112, SKOV-3, OAW-

42 and OV-90 OC cell lines. The molecular characterization studies performed in these cells

grown in monolayers showed differences in E-cadherin expression levels among them, which

were associated with the expression of transcriptional repressors. In particular, Twist, Slug

and ZEB1 were the highest ones expressed in cell lines depicting the lowest E-cadherin

levels (TOV-112 and SKOV-3). These findings agree with those from the TCGA database anal-

ysis, in favor of using these cell lines to study regulation of E-cadherin expression in OC

progression.

Besides E-cadherin analysis, protein expression of N-cadherin, cytokeratins and vimentin

led us to classify the 4 OC cell lines in different EMT profiles: mesenchymal (M; TOV-112),

intermediate (I; SKOV-3 and OAW-42), and epithelial (E; OV-90). Moreover, based on the

relative proportion of E- to N-cadherin expression levels, cells were subclassified into interme-

diate mesenchymal (IM; SKOV-3) and intermediate epithelial (IE; OAW-42) subtypes.

Although terms selected to define these 4 phenotypes were previously used by Huang and col-

leagues [29], in that report the M and E phenotypes were based only on the absence or pres-

ence of E-cadherin, respectively, and the IM and IE were defined by the expression of

vimentin and cytokeratins.

When grown under anchorage-independent conditions, the 4 OC cell lines were able

to form cellular aggregates that showed the same EMT profiles found in cells grown in mono-

layers, but differences in their behavior were observed. The assessment of cell death, cell-

matrix adhesion and cell invasiveness showed that aggregates with an M-like phenotype (M:

TOV-112; IM: SKOV-3) had a higher survival rate as well as an increased ability to attach to

fibronectin and collagen I ECM and to invade through Matrigel™ than those with an E-like

phenotype (E: OV-90; IE: OAW-42). In line with our results, an enrichment of mesenchymal

genes was reported in OC cell lines and human samples depicting an invasive phenotype [45].

Interestingly, between M-like aggregates, those derived from SKOV-3 cells (IM phenotype)

depicted a higher ability to survive in suspension, to adhere and disaggregate onto both ECM

than TOV-112 aggregates (M phenotype). Altogether, the use of OC cell lines grown in sus-

pension revealed an association between the highest cell aggressive behavior and the IM

molecular phenotype, characterized by a high proportion of N- to E-cadherin expression in

addition to the co-expression of cytokeratins and vimentin.

Studies assessing the EMT profile in 20 ascites- and 6 tumor-primary cultures derived from

patients diagnosed with advanced-stage high-grade serous OC, showed the expression of E-

and N-cadherin, cytokeratin 19 and vimentin mRNA in all samples. The functional conse-

quences of the co-expression of these EMT markers in OC cells would be in favor of the con-

cept of cell plasticity, which has been related to cell aggressiveness [29, 46]. Interestingly,

among the 4 markers, E-cadherin showed the highest increased mRNA expression (around

70%) in ascites- compared to tumor-primary cultures, suggesting a potential role of this mole-

cule in the OC cell dissemination process.

E-cadherin and ovarian cancer aggressiveness and prognosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0184439 September 21, 2017 20 / 25

https://doi.org/10.1371/journal.pone.0184439


A further analysis focused on the relative proportion of N- to E-cadherin and the presence

of both vimentin to cytokeratin 19 mRNA in ascites, revealed an IM phenotype in all samples

evaluated. Furthermore, the quantification analysis of the 4 EMT markers showed a low dis-

persion of N-cadherin and vimentin mRNA expression, contrasting with the high dispersion

found among mRNA levels recorded for the epithelial markers. However, E-cadherin mRNA

levels were the only ones that significantly correlated with CA125 levels and PFI, both mea-

surements used worldwide for OC patient prognosis.

Based on our findings, a model describing changes in expression levels of E-cadherin in the

primary tumor and in disseminating cells is shown in Fig 7. A decrease in E-cadherin expres-

sion is associated with epithelial ovarian tumor progression, contributing to the shedding of

OC cells into the abdominal cavity. Individual cells then aggregate in suspension and form

multicellular structures with different expression levels of E-cadherin, as well as N-cadherin,

cytokeratins and vimentin. Cell aggregates with an epithelial-like phenotype (E and IE) are

more prompted to undergo apoptosis, whereas those classified as mesenchymal-like (M and

IM) are able to survive under anchorage-independent conditions and to adhere and invade the

mesothelium lining, leading to metastasis and a worse patient prognosis.

In summary, results from the present study have demonstrated that E-cadherin is a deter-

minant molecule associated with OC progression, dissemination and aggressiveness. For the

first time, we have shown that total and membranous E-cadherin expression levels is a specific

and sensitive marker to differentiate advanced- from early-stage tumors and serous tumors

from other histological types. Moreover, E-cadherin mRNA expression levels in ovarian cancer

ascites depicting an IM phenotype is a predictive marker of OC patient prognosis.

Fig 7. Schematic representation of the OC dissemination process. Along epithelial ovarian tumor

progression E-cadherin expression levels decrease with tumor FIGO stages, contributing to the shedding of OC

cells into the abdominal cavity. Individual cells could then aggregate in suspension and form multicellular

structures with different expression levels of E- and N-cadherin, as well as of cytokeratins and vimentin.

According to the expression of these EMT-related markers, cell aggregates could be classified as mesenchymal

(M; expression of N-cadherin and vimentin, and absence of E-cadherin and cytokeratins detectable levels),

intermediate mesenchymal (IM; expression of N-cadherin, E-cadherin, cytokeratins and vimentin, with a high N-

to E-cadherin proportion), intermediate epithelial (IE; expression of N-cadherin, E-cadherin, cytokeratins and

vimentin, with a high E- to N-cadherin proportion) and epithelial (E; expression of E-cadherin and cytokeratins,

and absence of N-cadherin and vimentin detectable levels).Those aggregates with an mesenchymal-like

phenotype (M and IM) will be able to survive under anchorage-independent conditions and to adhere and invade

the mesothelium lining, leading to metastasis and a worse patient prognosis. However, aggregates with an

epithelial-like phenotype (E and IE) will be more prompted to undergo apoptosis.

https://doi.org/10.1371/journal.pone.0184439.g007
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Supporting information

S1 Fig. Comparison of E-cadherin mRNA expression levels between single and pooled

samples of TOV-112, SKOV-3, OAW-42 and OV-90 OC cell lines grown in monolayers. E-

cadherin mRNA expression analysis of (A) single and (B) pooled cell lines samples by quanti-

tative real time PCR.

(TIF)

S2 Fig. Expression analysis of E-cadherin protein in a human OC TMA and its association

with clinicopathological parameters. (A) Representative images of E-cadherin staining for

early-stage (Stage I: serous, mucinous, endometrioid, clear cell; Stage II: undifferentiated) and

advanced-stage (Stage III in all cases) tumors of different histological types (100x and 1000x

magnifications). (B-E) Protein expression analysis of (B) total, (C) membranous, (D) cyto-

plasmic and (E) nuclear E-cadherin in 76 ovarian tumors arranged in a TMA, and the relation-

ship with tumor stage, grade and histology.

(TIF)

S3 Fig. Wound healing assay. Representative phase contrast images (100x magnification) of

TOV-112, SKOV-3, OAW-42 and OV-90 cell lines, 0, 4, 8, 12 and 24 hours (h) after making

the heal. For OAW-42 and OV-90 images are also shown 48 h after making the heal.

(TIF)

S4 Fig. Morphological analysis of TOV-112, SKOV-3, OAW-42 and OV-90 aggregates of

24 hours. Representative phase contrast images (100x and 200x magnifications) of TOV-112,

SKOV-3, OAW-42 and OV-90 24 hour-aggregates generated by the hanging drop method.

(TIF)

S5 Fig. Disaggregation assay. (A) Representative phase contrast images (100x and 200x mag-

nifications) of TOV-112, SKOV-3, OAW-42 and OV-90 aggregates, disaggregating onto fibro-

nectin and collagen I matrices after 30 hours. (B) Graphical representation of the area (px2:

pixeles2) of TOV-112, SKOV-3, OAW-42 and OV-90 aggregates disaggregating onto fibronec-

tin (left) and collagen I (right) as a function of time (h).

(TIF)
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