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Malignant abdominal fluid (ascites) frequently develops 
in women with advanced high-grade serous ovarian cancer 
(HGSOC) and is associated with drug resistance and a poor 
prognosis1. To comprehensively characterize the HGSOC asci-
tes ecosystem, we used single-cell RNA sequencing to pro-
file ~11,000 cells from 22 ascites specimens from 11 patients 
with HGSOC. We found significant inter-patient variability 
in the composition and functional programs of ascites cells, 
including immunomodulatory fibroblast sub-populations and 
dichotomous macrophage populations. We found that the 
previously described immunoreactive and mesenchymal sub-
types of HGSOC, which have prognostic implications, reflect 
the abundance of immune infiltrates and fibroblasts rather 
than distinct subsets of malignant cells2. Malignant cell vari-
ability was partly explained by heterogeneous copy number 
alteration patterns or expression of a stemness program. 
Malignant cells shared expression of inflammatory programs 
that were largely recapitulated in single-cell RNA sequencing 
of ~35,000 cells from additionally collected samples, including 
three ascites, two primary HGSOC tumors and three patient 
ascites-derived xenograft models. Inhibition of the JAK/STAT 
pathway, which was expressed in both malignant cells and 
cancer-associated fibroblasts, had potent anti-tumor activity 
in primary short-term cultures and patient-derived xenograft 
models. Our work contributes to resolving the HSGOC land-
scape3–5 and provides a resource for the development of novel 
therapeutic approaches.

Despite recent therapeutic advances, recurrent ovarian cancer is 
incurable and portends a poor prognosis with a median survival 
of approximately 1 year6. Intra-tumor heterogeneity of ovarian can-
cer cells and associated non-malignant cells is an important factor 
in driving treatment resistance, but remains poorly understood. 
Genomic analysis of high-grade serous ovarian cancer (HGSOC)—

the most common and aggressive histological subtype—revealed 
TP53 mutations, defects in homologous recombination DNA 
repair and extensive copy number aberrations in most tumors2, 
and classified HGSOC into four transcriptional subtypes with dis-
tinct prognoses2,7. Ascites—comprised of a diverse collection of 
cell types—is present in one-third of patients with ovarian cancer 
at the time of diagnosis, and frequently occurs in patients with 
chemotherapy-resistant disease8. Here, we study ascites samples from 
patients with HGSOC, primary tumors and patient-derived xeno-
graft (PDX) models by single-cell RNA sequencing (scRNA-seq), to 
resolve the expression profiles of diverse cancer, immune and stro-
mal cells, and their interactions, each of which may contribute to 
disease development and treatment resistance9–12.

We collected scRNA-seq data from three HGSOC cohorts total-
ing 35,957 high-quality cell profiles from a set of 22 ascites samples 
from 11 patients and a validation set (gathered separately) of three 
additional ascites samples and two primary tumors (Supplementary 
Table 1), collected through a translational workflow9,13. Together, this 
data compendium spans four treatment-naive, two on-treatment 
during initial chemotherapy, 18 on-treatment during disease 
recurrence, and two post-neoadjuvant chemotherapy specimens 
that reflect the substantial, real-life diversity among patients with 
HGSOC. We used three complementary profiling strategies (Fig. 1a, 
Extended Data Fig. 1a and Supplementary Table 1). First, to obtain 
a broad view of the different cell types in the ascites ecosystem, 
we analyzed eight specimens (partly depleted of CD45+ immune 
cells; Methods) from six patients using massively parallel drop-
let scRNA-seq (cohort 1) (Methods). Second, because even after 
CD45+ cell depletion, droplet-based profiling had a relatively low 
proportion of malignant cells (7.9%; see below), we complemented 
it by isolating 1,297 viable malignant EPCAM+CD24+ cells, which 
identify cancer cells with high sensitivity and specificity14, from 14 
ascites specimens from six individuals by fluorophore-activated 
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Fig. 1 | Charting the ovarian cancer ascites landscape by scRNA-seq. a, Overview of sample collection and the profiling strategy. RBC, red blood cell. 
b,c, Malignant and non-malignant cell clusters in patient ascites by droplet-based scRNA-seq. b, t-SNE of 9,609 droplet-based scRNA-seq profiles from 
eight samples, colored by sample of origin. Numbers indicate unsupervised assignment to 18 clusters. c, Fraction of cells (x axis) from each sample (color 
code as in b) in each cluster (y axis). Clusters are labeled (right) by their post-hoc annotation based on differentially expressed genes (as in d).  
DC, dendritic cells; ery., erythrocytes. d, Differentially expressed genes. The average expression (log2[TPM + 1]; color bar) of the top 30 genes 
(rows) that are differentially expressed in each cluster (columns) is shown. Genes are ordered by hierarchical clustering. Fibro., fibroblasts; macro., 
macrophages. e, An inflammatory subset of CAFs. Comparison of the average expression (log2[TPM + 1]) of each gene in CAF cluster 8 (y axis) versus 
CAF clusters 6 and 7 (x axis). Red points indicate immunomodulatory genes.
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cell sorting (FACS) into 96-well plates, followed by full-length 
scRNA-seq using a modified SMART-seq2 protocol15,16 (cohort 2)  
(Methods). Third, as a validation set to examine the generaliz-
ability of our results, we assembled three additional ascites speci-
mens (10,688 cells) and two primary tumors (14,505 cells) from the 
Human Tumor Atlas Pilot Project (HTAPP) (cohort 3)17.

First, we used the droplet-based scRNA-seq (cohort 1) to iden-
tify and annotate 18 distinct cell clusters spanning epithelial cells 

(five clusters marked by EPCAM, as well as cytokeratin- and 
kallikrein-encoding genes), macrophages (four clusters marked 
by CD14, AIF1, CSF1R and CD163), cancer-associated fibroblasts 
(CAFs) (four clusters marked by PDPN, DCN and THY1), dendritic 
cells (two clusters marked by CD1C, CD1E, CCR7 and CD83), B 
cells (CD19 and CD79A/B), T cells (CD2 and CD3D/E/G) and 
erythrocytes (GATA1 and hemoglobin-encoding genes) (Fig. 1b–d,  
Extended Data Fig. 2a, Supplementary Table 2 and Methods). 
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Fig. 2 | Malignant and non-malignant cell expression profiles help to identify the cellular basis of TCGA subtypes. a,b, Malignant cell clusters are enriched 
in patient ascites by FACS and plate-based scRNA-seq. a, t-SNE of 1,297 single-cell profiles from 14 ascites samples profiled by plate-based scRNA-seq, 
colored by patient. Numbers indicate unsupervised assignment to eight clusters. b, Fraction of cells (x axis) from each sample (color code as in a) in each 
cluster (y axis). Clusters are labeled (right) by their post-hoc annotation based on differentially expressed genes (as in c). c, Differentially expressed genes. 
Average expression (log2[TPM + 1]; color bar) of the top 30 genes (rows) that are differentially expressed in each cluster (columns). Genes are ordered 
by hierarchical clustering. d, The immunoreactive and mesenchymal subtypes reflect macrophages and fibroblast components. Subtype score (color bar), 
based on the average expression of subtype-specific genes (Methods) of each cluster (rows) for each of four TCGA subtypes (columns). e, Immunoreactive 
and mesenchymal TCGA subtypes have lower overall purity than differentiated and proliferative ones. The distribution of a purity estimate value (y axis; 
ABSOLUTE39; Methods) for TCGA ovarian cancer tumors (n = 282) in each subtype (x axis) is shown. Horizontal bars show mean values, box edges 
represent the interquartile range, whiskers show minimum and maximum values and dots represent outliers. ***P < 10−10 (two-sided t-test).
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Although we depleted CD45+ cells, immune cells remained the 
most abundant component, comprising on average 67% of the 
cells in each sample (ranging from 4–98%), highlighting a unique 
challenge of analyzing tumor cells from malignant effusions not 
usually encountered with solid tumor preparations17. The overall 
proportion of immune cells in each sample may reflect the differ-
ential efficiency of immune depletion (Methods), while other dif-
ferences between samples may also be of biological origin (Fig. 1c).  
We examined whether different treatment histories explained dif-
ferences in cellular ascites composition. Among cancer cells, there 
was marked inter-patient heterogeneity (Fig. 1b–d), which was not 
associated with previous treatment history (Extended Data Fig. 1b). 
Among CAFs and macrophages, expression profiles were similar 
across patients, indicating shared phenotypes, while the differ-
ences between patients were not clearly correlated with patients’ 
treatment histories (Extended Data Fig. 1c). Determining whether 
expression patterns are linked to previous treatment exposures will 
require larger patient cohorts.

We examined the variation in macrophage and CAF subsets 
within and across patients. Macrophages and CAFs each comprised 
four clusters (Fig. 1c,d), driven by both inter- and intra-patient vari-
ability. While some clusters were comprised almost entirely of cells 
from a single patient, most had cells from multiple patients (Fig. 1c),  
including fibroblast clusters composed of cells from three or more 
patients.

Among CAFs, we identified distinct cell states, includ-
ing sub-populations with expression of immune-related genes, 
such as complement factors (C1QA/B/C and CFB), chemokines 
(CXCL1/2/10/12) and cytokines (IL6 and IL10) in clusters 8 and 9, 
compared with CAFs in clusters 6 and 7 (Fig. 1e and Extended Data 
Fig. 2b), suggesting a role as immunomodulatory CAFs18,19. This 
variation was also observed within a single patient: repeating the 
same analysis only with CAFs from patient sample 5.1 recapitulated 
CAF sub-populations based on the differential expression of 80 
genes (Extended Data Fig. 2c). Among other cytokines expressed by 
these fibroblast subsets, CXCL12 and interleukin-6 (IL-6) activate 
JAK/STAT signaling across cancers20.

Among macrophages, clusters 10 and 13 comprised the majority 
of cells. While most cells from cluster 13 derived from one patient 
sample (5.1), cluster 10 had cells from multiple patients. To exam-
ine intra-patient heterogeneity of macrophages, we focused on 
cells in cluster 10 from patient samples 6 and 5.0, each separating 
into two sub-populations (Extended Data Fig. 2d; groups 1 and 2) 
and characterized by consistent transcriptional programs. Group 1  
cells co-expressed HLA genes encoding major histocompat-
ibility complex (MHC) class II, IFNGR1, CD1D, CD36 and CD52, 
whereas group 2 cells expressed complement factor components, 
cathepsin-encoding genes and APO genes (Extended Data Fig. 2e). 
Moreover, group 1 cells expressed several genes identified as mark-
ers for M1 macrophages (IFNGR1, CD36, DDX5 and MNDA) and 
as suppressors of M2 differentiation (C3AR1), while group 2 cells 

expressed genes described in M2 macrophages, including those 
regulating M2 differentiation. While the M1/M2 dichotomy is 
currently being revised, this separation may indeed be associated 
with functional pro-/anti-tumor macrophage states. These findings 
generalized to samples with macrophages from all other patients 
(except patient sample 5.1) (Extended Data Fig. 2f).

We next sought to determine the inter- and intra-patient hetero-
geneity of malignant cells in HGSOC. To this end, we focused on the 
FACS-enriched, deeper-coverage, full-length scRNA-seq profiles 
(cohort 2), and identified eight clusters (Fig. 2a,b), including six 
of epithelial cells, one of CAFs (cluster 7) and one of macrophages 
(cluster 8) (Fig. 2b,c and Extended Data Fig. 3). We confirmed that 
the epithelial cells were malignant by inferring chromosomal copy 
number alterations (CNAs)9 (Extended Data Fig. 4 and Methods). In 
contrast with macrophages and CAFs, the malignant cells clustered 
by their patient of origin (Fig. 2a,b), highlighting inter-individual 
variation. Some of this variation reflected the distinct CNA profile 
of each tumor (Extended Data Fig. 4), but additional genetic and 
epigenetic effects probably contributed to inter-patient variability 
among malignant cells.

Next, we asked whether inter-patient variability among malig-
nant cells was consistent with the previously described The Cancer 
Genome Atlas (TCGA) subtypes—differentiated, proliferative, mes-
enchymal and immunoreactive—that have been derived from RNA 
expression profiling of bulk solid tumors from untreated patients 
with HGSOC and have been associated with varying prognoses2. 
We thus scored each cluster for the expression of TCGA-derived 
subtype signatures (Methods).

All six malignant cell clusters highly expressed the differenti-
ated signature and only one (cluster 4) strongly expressed the pro-
liferative signature (Fig. 2d and Extended Data Fig. 5), whereas the 
mesenchymal and immunoreactive signatures showed weak or no 
expression in cancer cell clusters, but were highly expressed by the 
CAF and macrophage clusters, respectively. Thus, the mesenchy-
mal and immunoreactive subtypes may represent the intra-tumoral 
abundance of CAFs and macrophages, respectively. This is consis-
tent with previous reports that TCGA tumors with these classifica-
tions had a significantly lower purity21 (Fig. 2e), but the single-cell 
analysis showed that the immunoreactive and mesenchymal gene 
programs (such as those associated with epithelial–mesenchymal 
transition) were derived from the non-malignant immune cells 
and CAFs, respectively, as opposed to malignant cells. Thus, sub-
type classifications based on bulk RNA profiles probably predomi-
nantly reflect tumor ecosystem composition rather than cancer 
cell-derived HGSOC subtypes.

We then aimed to identify expression programs that vary among 
each patient’s malignant cells. We used non-negative matrix factor-
ization (NMF) and identified a total of 35 modules across malig-
nant cells with coherently co-varying gene expression (Fig. 3a–c, 
Extended Data Fig. 6a,b and Supplementary Table 3). The modules 
spanned diverse functions, reflected by their top-scoring genes, 

Fig. 3 | Inflammatory programs in malignant cells from patient ascites predict a role for JAK-STAT signaling. a–c, Intra-tumoral expression modules 
showing the relative expression (color bar; Methods) of the top 30 module-specific genes (rows) in each module (ordered by module; dashed 
horizontal lines), as defined by NMF (Methods) across all cancer cells (columns; ordered by hierarchical clustering) from patients 8 (a), 9 (b) and 10 
(c). Selected genes are annotated. The top bar in a and b shows the sample times in three sequential samples from the same patient. d,e, Cell cycle and 
inflammatory/immune programs recur across patients. d, Number of top genes (color bar) shared between each pair of modules (rows and columns, 
ordered by hierarchical clustering). Top: module’s patient of origin. e, Module membership in the top 30 (black) or 50 (gray) selected cell cycle (top) and 
immune-related (bottom) genes (rows) across all modules (columns), ordered as in d. IFN resp., interferon response. f, MHC class II-expressing cancer 
cells in situ. Representative immunofluorescence staining of HGSOC primary tissue, with staining for nuclei (blue), pan-keratin (green) and MHC class II 
(red). Scale bar: 20 µm. The overlay (right) shows co-expression of pan-keratin and MHC class II, indicating cancer cell-autonomous expression of MHC 
class II in a subset of cancer cells. g,h, Broad and high expression of JAK-STAT pathway components across malignant cells. g, Distribution of the average 
expression of genes (x axis, log2[TPM + 1]) for all detected genes (y axis). Red indicates the STAT1/3 and JAK1/STAT2 expression bins. h, Mean expression 
(x axis; log2[TPM + 1]) and percentage of expressing cells (y axis) of signaling genes. Key nodes of the JAK/STAT pathway are labeled. The line shows the 
LOWESS regression curve.
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including cell cycle (for example, CCNA2, CCNB2 and AURKB), 
inflammation (for example, IL6, IL32, TNF and IFI6) and stress or 
activation (for example, HSPA5–7, ATF4, JUN and DDIT3). One 

intriguing module consisted of prominent stemness22 (ALDH1A3 
and CD133/PROM1) and mesenchymal markers (FN1, ACTA2 
and MYL9), and AXL and its only known ligand GAS6, which is 
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implicated in drug resistance23 (Extended Data Fig. 6c-e); how-
ever, this program was unique to patient 7 and was not detected 
in cancer cells across the cohorts examined here (Extended Data 
Fig. 6c-f). Profiling of larger patient cohorts will be required to 
examine whether this is a recurrent stemness signature in HGSOC. 
Together, and in line with previous work3,4,9–11, we found intra- and 
inter-individual heterogeneity of malignant and non-malignant 
cells, suggesting different functional sub-populations that contrib-
ute to shaping the HGSOC ecosystem.

To identify cancer cell programs shared across patients, we 
next compared the modules across different patients (Fig. 3d). As 
expected, there was strong overlap of cell cycle modules, indicat-
ing the presence of proliferating sub-populations of cells in all 
specimens. In addition, three programs dominated by immune- 
or inflammation-associated genes were shared among patients  
(Fig. 3d,e): an inflammatory cytokines module (for example, IL6, 
TNF, IL8 and IL32), an MHC class II antigen presentation mod-
ule (for example, CD74 and HLA-DRA) and an interferon-response 
module (for example, IFI6, IFIT1 and ISG15). These immune-related 
programs were also detected in cells from cohort 3, including three 
additional ascites samples and two primary tumors (Extended 
Data Fig. 6h–j). Cancer cell-intrinsic expression of MHC class II 
protein has recently been described in other epithelial cells24,25, 
tumor-initiating cells26 and cancers, such as melanoma27, and can be 
associated with response to immunotherapies even in the absence 
of MHC class I expression27. We confirmed the expression of the 
MHC class II module in copy number variant-bearing malignant 
cells (Extended Data Fig. 6g) and showed by immunofluorescence 
staining of independent primary HGSOC tumors the presence of 
a sub-population of MHC class II-expressing cancer cells (among 
other cells that express MHC class II) (Fig. 3f).

Inflammatory cancer cell programs may be induced by the 
ascites microenvironment or reflect an endogenous property of 
the cancer cells. To evaluate these possibilities, we profiled 795 
cells by scRNA-seq of three previously established PDX mod-
els (DF20, DF68 and DF101) (Methods) grown as subcutaneous 
tumors in immunocompromised animals28 collected pre-, on and 
post-platinum therapy (Methods). Globally, PDX and patient cancer 
cells were as strongly correlated with each other (Pearson’s r = 0.819 
on average) as cancer cells of different PDX models (r = 0.822 on 
average) or cancer cells across patients (inter-patient comparison; 
r = 0.882 on average) (Extended Data Fig. 7a). Next, we identified 24 
programs in the PDX models by NMF (Extended Data Fig. 7b-d and 

Supplementary Table 4) and compared them with those identified 
in patient ascites (Extended Data Fig. 7e,f).

Nine PDX modules were analogous to those from patient sam-
ples, including three reflecting cell cycle (PDX modules 1–3) and 
three interferon-response programs (PDX modules 6–8) (Extended 
Data Fig. 7f), highlighting this as the most significant similarity 
(apart from the cell cycle) between patterns of heterogeneity in 
patients and PDX models. The other two inflammation-related pro-
grams found in patients (cytokine and antigen presentation mod-
ules) were not detected in PDX models (Extended Data Fig. 7g), 
suggesting that their expression in cancer cells may depend on an 
intact immune system (mostly absent in nod scid gamma (NSG) 
mice) or other microenvironmental cues.

Multiple observations led us to consider the JAK/STAT pathway 
as a potential vulnerability. First, as described above, sub-populations 
of cancer cells highly expressed three immune-related programs that 
may be downstream from the JAK/STAT pathway. Second, cells in 
the ascites microenvironment, such as CAFs, highly expressed genes 
of secreted ligands (for example, IL6 and CXCL12) that activate the 
JAK/STAT pathway. Third, analysis of a large set of signaling genes 
highlighted a particularly high and ubiquitous expression of JAK/
STAT pathway components both in malignant and non-malignant 
cells (Fig. 3g,h and Extended Data Fig. 8a).

To determine the impact of JAK/STAT inhibition, we per-
formed a drug screen using 15 compounds targeting different 
nodes of the pathway or its effectors, and platinum chemotherapies 
(Supplementary Table 5) in the HGSOC cell line OVCAR4, and 
identified JSI-124 (ref. 29) as a potent inhibitor of cell viability (Fig. 
4a and Extended Data Fig. 8b,c). JSI-124 showed anti-tumor activ-
ity at nanomolar doses in three different patient-derived cell culture 
models and additional HGSOC cell lines30, while other drugs fre-
quently used for the treatment of patients with HGSOC had little 
to no activity (Fig. 4b,c and Extended Data Fig. 9). JSI-124 also 
reduced the formation of three-dimensional clusters (spheroids) 
and their invasion through a mesothelial monolayer (modeling the 
abdominal peritoneum, which represents an important barrier for 
metastatic disease) (Fig. 4d–f and Supplementary Videos 1–4). In 
the PDX model DF20, which has substantial transcriptional similar-
ity to patient ascites cancer cells (Extended Data Fig. 7a), early initi-
ation of JSI-124 treatment (7 d after intraperitoneal or subcutaneous 
injection of tumor cells) abrogated the development of malignant 
ascites and tumor growth, respectively (Fig. 4g,i). Furthermore, 
JSI-124 significantly reduced disease burden in models where  

Fig. 4 | JAK/STAT inhibition reduces viability, spheroid formation and invasion of HGSOC models ex vivo and in vitro. a, JSI-124 reduces cell viability in 
the OVCAR4 ovarian cancer cell line. Shown is the relative (mean) viability compared with the control in GILA (y axis), following 2 d of treatment of the 
OVCAR4 cell line with each of 14 inhibitors of the JAK/STAT pathway, as well as carboplatin and cisplatin (x axis). **Padj = 0.0032 for JSI-124 (one-way 
analysis of variance (ANOVA) with Holm–Bonferroni correction with Holm–Šídák extension). Error bars represent s.d. (n = 3). b, JSI-124, but not the other 
compounds routinely used for the treatment of ovarian cancer, reduces the mean viability of patient-derived ex vivo cultures. Shown is the percentage 
viability relative to DMSO-treated cells (y axis) in ex vivo cultures derived from patients 3, 5 and DF3291, each of which was treated for 48 h with 
increasing doses (x axis) of JSI-124, carboplatin, cisplatin, paclitaxel or olaparib. Error bars represent s.d. (n = 4). The results are representative of biological 
duplicates. c,d, JSI-124 leads to spheroid disintegration. c, Examples of light microscopy images of spheroids treated with the indicated compounds 
(representative of biological triplicates). d, Average number of spheroids (relative to DMSO-treated controls; y axis) formed with five established ovarian 
cancer cell lines (x axis) treated with two doses of JSI-124 or carboplatin. *Padj < 0.05 (one-way ANOVA with Holm–Bonferroni correction with Holm–Šídák 
extension). Error bars represent s.e.m. (n = 3). e,f, JSI-124 treatment reduces mesothelial clearance by patient-derived spheroids from patient-derived 
cultures and established cell lines. Shown are the levels of mesothelial clearance (y axis) by patient-derived cells (NACT8) treated with either JSI-124 
(for 30 or 120 min) or DMSO (e), or by the ovarian cancer cell lines OVCAR8 and TYKNU, treated for 30 min (f). A total of 20 spheroid clusters were 
assessed per iteration. **P < 0.01 (one-way ANOVA and post-hoc Tukey–Kramer test). The results are representative of two independent experiments 
with n = 20 spheroids per condition. Horizontal bars show mean values, box edges represent the interquartile range, and whiskers show minimum and 
maximum values. g–j, JSI-124 prevents tumor growth and eliminates established tumors in PDX models. Shown are the mean log[BLI signal] values 
(y axis) from PDX mice injected with DF20 tumor cells and treated with either vehicle (black) or JSI-124 (red) and monitored over time (x axis). Error 
bars represent s.e.m. (n = 5 mice per group). All statistical tests were two-sided t-test comparing mean ± s.d. values at day 15 of treatment. g, Mice were 
injected intraperitoneally (IP) and started treatment 1 week later for 14 d. ***P < 0.0001. h, Mice were injected IP, malignant ascites were allowed to form, 
and treatment started at 21 d and lasted another 14 d. **P = 0.002. i, Mice were injected subcutaneously (SC) and started treatment 1 week later for 14 d. 
***P < 0.0001. j, Mice were injected SC, tumors were allowed to form, and treatment started at 21 d and lasted another 14 d. **P = 0.0028.
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intraperitoneal ascites and subcutaneous tumors were grown for 
21 d before treatment initiation (Fig. 4h,j). Together, these results 
suggest that JAK/STAT inhibition may be a potent therapeutic 
option for patients with HGSOC, through action on malignant cells, 
non-malignant cells or both.

Discussion
Our scRNA-seq study of malignant ascites from patients with 
advanced HGSOC reveals significant variability in cellular states 
and programs among malignant and non-malignant cells. Among 
non-malignant cells, we observed diversity among CAFs, with 

a subset expressing immunomodulatory programs, as recently  
proposed in other cancer types, such as pancreatic ductal adeno-
carcinoma19, where inflammatory CAFs strongly express IL-6 and 
other cytokines and may promote tumor growth and drug resis-
tance. Shared activation of the JAK/STAT pathway in cancer cells 
and CAFs suggests that paracrine (and/or autocrine) signaling via 
this pathway may contribute to the pathogenesis of malignant asci-
tes and drug resistance, and provide one example of how cell-to-cell 
interactions shape the ascites ecosystem. Macrophage diversity 
primarily involved one major axis of variation driven by two gene 
programs: one including MHC class II, interferon-γ receptor 1 and 
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M1-associated genes, and the other by complement factors, sug-
gesting that a balance of these phenotypes exists within the ascites  
ecosystem. Previous reports indicate that platinum therapy may fur-
ther push this balance towards M2 macrophages by altering mono-
cyte differentiation31. Such changes may occur rapidly, as indicated 
in a shift from M1-like to M2-like macrophage programs in one 
patient pair (5.0 and 5.1) examined pre-treatment and during treat-
ment with platinum chemotherapy.

Variation across cancer cells was driven primarily by 
inter-patient variation, including CNA patterns, but additional 
subtler intra-patient variation was also present, such as a putative 
stemness program unique to a sub-population of cells in patient 
7. Some of the intra-patient patterns of heterogeneity were con-
sistent across multiple patients. For example, subsets of malignant 
cells expressing the MHC class II program were present in multiple 
patients and may be associated with an increased abundance of 
tumor-infiltrating lymphocytes, improved prognosis and response 
to immunotherapies32. MHC class II-expressing subsets were not 
identified in PDXs, suggesting that they may depend on immune 
cell interactions. An interferon-response and a cytokine program 
also co-varied across malignant cells in multiple patients. Thus, 
significant cellular and transcriptional forces within the ascites 
ecosystem (pro-tumorigenic or pro-immunogenic) may balance 
disease progression and responses to therapies. Therapeutically 
shifting this balance may be one avenue for reshaping the 
drug-resistant milieu.

Previous work focusing on intra-patient and intra-lesion 
genetic variability showed that development and response to ther-
apy of primary tumors or metastatic lesions emerge as a result of 
co-evolution of malignant and non-malignant compartments33,34. 
Similarly, we hypothesize that interactions between CAFs and 
macrophages in the ascites ecosystem regulate or enhance cancer 
cell-autonomous programs. One example is the putative interaction 
between CAFs secreting IL-6 to stimulate JAK/STAT signaling in 
cancer cells, which is associated with poor prognosis and resistance 
to chemotherapies35. Consistently, JAK/STAT inhibition promoted 
anti-tumor activity in several pre-clinical models. Clinical trials, 
such as a phase I/II study using combination therapies with the 
JAK/STAT inhibitor ruxolitinib (NCT02713386) will help to clarify 
the role of such therapies in HGSOC.

HGSOC subtypes defined by TCGA have been associated with 
prognosis and drug response2,36. In our study, the vast majority of 
cancer cells across patients strongly expressed the differentiated 
subtype program, and a minority of cells from one patient also 
expressed the proliferative subtype program. In contrast, the mesen-
chymal and immunoreactive subtype programs were not expressed 
by cancer cells, but reflected programs expressed by CAFs and mac-
rophages, respectively, and therefore represent tumor composition 
rather than salient cancer cell programs. While previous work could 
not evaluate the relative contribution of CAFs and cancer cells to the 
mesenchymal subtype (which also includes epithelial–mesenchy-
mal transition genes), our results suggest that most, if not all, of this 
subtype can be explained by CAFs. This is consistent with findings 
in colorectal37 and head and neck cancer12. Increased CAF infiltra-
tion may contribute to the low response rates to certain therapies, 
such as immune checkpoint inhibitors, whose efficacy is impacted 
by the tumor microenvironment38.

Future studies should enhance our work in two main ways. First, 
profiling a larger number of patient samples would allow us to test 
for the generality of programs identified only in one patient (for 
example, the stemness program in patient 7) in our study. Second, 
single-cell profiling of well-stratified clinical cohorts, rather than 
the diverse patient population in our analysis (included to recapitu-
late true-to-life clinical heterogeneity), should enhance inter-patient 
comparisons and identify converging aspects of tumor biology and 
drug resistance, to improve our understanding of HGSOC.
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Methods
Collection of patient specimens. Specimens were collected from patients with 
ovarian cancer at Brigham and Women’s Hospital and the Dana-Farber Cancer 
Institute under Institutional Review Board-approved protocols 02–051 and 11–104. 
Ascites fluid was drained by an interventional radiologist and transferred for 
further processing in closed-vacuum bottles. De-identified patient information, 
including their ovarian cancer histology, stage, treatment history and BRCA1/2 
mutation status, was collected.

Sample handling, flow cytometry and single-cell isolation. Immediately 
following drainage, malignant ascites were transported on ice, aliquoted into 50-ml 
conical tubes (BD Falcon) and spun for 5 min at 580g at 4 °C. The supernatant 
was aspirated and the remaining pellet was resuspended with 5 ml hypotonic 
lysis buffer ACK (Life Technologies) and incubated on ice for 5 min. Then, 
20 ml phosphate-buffered saline (PBS) was used to quench the lysis buffer. Cell 
suspensions were pooled and pipetted into a new 50-ml conical tube through a 
100-µm mesh and spun for 5 min at 580g at 4 °C. Hypotonic lysis was repeated until 
no visible red blood cell component was present, usually for a total of two or three 
times (for the plate-based approach). Following red blood cell lysis, the cell pellet 
was resuspended in PBS with 2% (vol/vol) fetal bovine serum (FBS). These cells 
were then used for both plate-based and droplet-based scRNA-seq. For plate-based 
scRNA-seq, cells were labeled with the following fluorophore-conjugated flow 
cytometry antibodies: live/dead stain with Calcein-AM (Life Technologies), 
7-aminoactinomycin D (Life Technologies), CD45-FITC (VWR; 304006; clone 
HI30), EPCAM-PE (Miltenyi Biotec; 130-111-116; clone REA764) and CD24-PE/
Cy7 (BioLegend; 311119; clone ML5). Cells were incubated for 30 min on ice in the 
dark. Cells were washed twice by resuspending with PBS with 2% (vol/vol)  
FBS and spun for 5 min at 580g at 4 °C. Flow cytometry and sorting were 
performed on a BD Biosciences cell sorter. Following doublet exclusion,  
calceinhigh7AAD−CD45−EPCAM+CD24+ single cells were sorted into 96-well 
microtiter plates (on a plate chiller) that were prepared with 10 μl cell lysis buffer 
(TCL + 1% β-mercaptoethanol). Following completion of cell sorting, plates were 
covered with aluminum lids, vortexed for 10 s, centrifuged for 2 min at 580g at 4 °C, 
and immediately placed on dry ice before storage at −80 °C.

Plate-based scRNA-seq. Plate-based scRNA-seq following FACS enrichment was 
used to strongly enrich for malignant cells. This approach complements efforts 
using the droplet-based method (below) where the non-malignant compartment 
makes up the vast majority of cells, but also includes a relatively small portion 
of cancer cells but with more shallow data. To balance both approaches, we used 
both to complement different types of analyses. For plate-based scRNA-seq, 
we performed whole-transcriptome amplification with a modified Smart-seq2 
protocol, as described previously15,16, with Maxima Reverse Transcriptase (Life 
Technologies) instead of Superscript II. Next, whole-transcriptome amplification 
products were cleaned with Agencourt XP DNA beads and 70% ethanol (Beckman 
Coulter), and Illumina sequencing libraries were prepared using Nextera XT 
(Illumina), as previously described16. The 96 samples of a multiwell plate were 
pooled, then cleaned with two 0.8× DNA SPRIs (Beckman Coulter). Library 
quality was assessed with a high-sensitivity DNA chip (Agilent) and quantified 
with a high-sensitivity dsDNA Quant Kit (Life Technologies). Barcoded single-cell 
transcriptome libraries were sequenced with 38-base pair paired-end reads on an 
Illumina NextSeq 500 instrument.

Droplet-based scRNA-seq. Single cells were isolated from patient-derived 
ascites as described above for all but one solid tumor, which was prepared for 
single-nucleus isolation as recently described17. Upon drainage of ascites, we 
immediately processed fresh specimens by removal of red blood cells using ACK 
lysis buffer, filtration and isolation of a single-cell suspension. Next, CD45+ 
cells were depleted using the MACS beads and columns, per the manufacturer’s 
instructions (Miltenyi Biotec). While this approach led to only partial depletion 
of CD45+ immune cells (the main component of ascites), we avoided repeated 
bead-based depletion, because it results in RNA degradation and compromises 
subsequent scRNA-seq17. Next, cells were counted and resuspended in PBS 
supplemented with 0.04% BSA for loading for single-cell library construction on 
the 10× Genomics platform. Experiments were performed with the Chromium 
Single Cell 3′ Library & Gel Bead Kit v2 and Chromium Single Cell 3′ Chip Kit 
v2 according to the manufacturer’s instructions in the Chromium Single Cell 3′ 
Reagents Kits V2 User Guide. Briefly, ~6,000 cells were loaded into each channel, 
then partitioned into gel beads in emulsion in the GemCode instrument, where 
cell lysis and barcoded reverse transcription of RNA occurred, followed by 
amplification, shearing and 5′ adaptor and sample index attachment. Barcoded 
single-cell transcriptome libraries were sequenced with 38 base pair paired-end 
reads on an Illumina NextSeq 500 instrument. The HTAPP cohort was processed 
and analyzed as recently described17.

Cell culture. The HGSOC cell lines Kuramochi, Ovsaho, Ovcar4, Ovcar8 and 
Tyknu were provided by the Cancer Cell Line Encyclopedia project at the Broad 
Institute. All cell lines were cultured in RPMI 1640 Medium (Gibco), supplemented 
with 10% FBS and 1% penicillin/streptomycin (Invitrogen), and were maintained 

in an incubator at 37 °C and 5% CO2. Sub-culturing of cell lines was done by 
detaching cells using 0.05% trypsin EDTA, quenching, washing and resuspending 
the cell pellet in fresh media.

In vitro and ex vivo drug sensitivity testing. The growth in ultra-low-attachment 
(GILA) assay40 was used to assess the drug sensitivity of patient-derived cell 
lines and established cell lines. Five ovarian cancer cell lines (Kuramochi, 
Ovsaho, Ovcar4, Ovcar8 and Tyknu) were each plated at 5,000 cells per 100 µl 
AR-5 medium (ACL4 media with 5% FBS)41 per well in both flat-bottomed 
high-attachment (Corning; 353072) and round-bottomed ultra-low-attachment 
(ULA) (Sigma–Aldrich; CLS7007-24EA) 96-well plates. For the initial screen with 
JAK/STAT pathway inhibitors, cells were treated with AZD1480 (AstraZeneca), 
NVP-BSK805 (Selleck Chemicals), TG101348 (STEMCELL Technologies), CX-
6258 (Selleck Chemicals), CEP33779 (Selleck Chemicals), Ruxolitinib (Novartis), 
Tofacitinib (Pfizer), SGI-1776 (Sigma–Aldrich), Cyt387 (Selleck Chemicals), 
S-Ruxolitinib (Selleck Chemicals), AZD1208 (AstraZeneca), HO-3867 (Cayman 
Chemical), SH-4–54 (Selleck Chemicals), trametinib (GlaxoSmithKline), JSI-124 
(Sigma–Aldrich), cisplatin (APP Pharmaceuticals) or carboplatin (Hospira) using 
1 µM in both ULA and high-attachment plates. Cells were collected on day 0 
(control) or after 48 h of treatment, covered with an aluminum lid, and flash frozen 
at −80 °C. Within 24 h of freezing, the cell viability of the samples was determined 
by CellTiter-Glo Luminescent Cell Viability Assay (CTG; Promega Corporation; 
G7572). The CTG reagent was thawed and diluted with 1× PBS in a 1:1 ratio before 
use. Plates were thawed and resuspended in equal volumes of CTG, then shaken on 
an orbital shaker at 100 r.p.m. for 2 min at room temperature to the mix contents 
and induce cell lysis. The plates were incubated at room temperature for 10 min 
to stabilize the luminescence signal. The cell culture and CTG reagent mixture 
was transferred to a white 96-well plate (Thermo Fisher Scientific; 07200722) and 
the luminescence signal was read on a 2103 EnVision Multilabel Plate Reader 
(PerkinElmer). Data analysis was performed using Excel and Prism.

Primary cell cultures were generated by removing red blood cells and 
depleting CD45+ cells using the MACS beads and columns, per the manufacturer’s 
instructions (Miltenyi Biotec). Then, 5,000 cells per 100 µl AR-5 medium per well 
were plated in both high-attachment and ULA 96-well plates. For the GILA assay, 
5,000 cells per well were seeded, maintained for 24 h and treated with either JSI-124 
(Sigma–Aldrich), cisplatin (APP Pharmaceuticals), carboplatin (Hospira), olaparib 
(AstraZeneca) or paclitaxel (Life Technologies) at the indicated doses of 0.01 µM, 
0.1 µM, 1 µM and 10 µM in both ULA and high-attachment plates. After three or 
five days of treatment, plates were covered with aluminum lids and flash frozen at 
−80 °C, followed by CTG assay as described above. Data analysis was performed 
using Excel and Prism.

Spheroid formation inhibition assay. Five ovarian cancer cell lines (Kuramochi, 
Ovsaho, Ovcar4, Ovcar8 and Tyknu) were plated in flat-bottomed ULA plates with 
either 0.1% DMSO, JSI-124 or carboplatin, at doses of 10 nM, 100 nM and 1 µM. 
After 48 and 72 h, spheroids with a diameter of >200 μm were counted using a 
CK40 Culture Microscope (Olympus America). The relative spheroid count was 
determined as a ratio of spheroids in the treatment conditions compared with 
DMSO-treated cells.

Culturing of patient-derived spheroids. Ovarian primary cells were frozen 
with 90% fetal bovine serum (FBS) and 10% DMSO at −80 °C and transferred 
to a liquid nitrogen tank for long-term storage. For spheroid assays, cells 
were thawed, washed in PBS, resuspended in AR-5 media and divided into 
flat-bottomed, ultra-low-attachment 6-well plates (Sigma–Aldrich; CLS3471-
24EA) and maintained in an incubator at 37 °C and 5% CO2 for 4 d. The media was 
replaced every 48 h. After 96 h, the cell suspension was passed through a 20-µm 
filter (Miltenyi Biotec; 130-101-812) to capture the spheroids larger than 20 µm 
in diameter. Reverse filtration was performed with AR-5 media to capture the 
spheroids that remained on the filter. The spheroids were collected and plated in 
ultra-low-attachment 6-well plates for short-term culture.

Mesothelial clearance assay. Primary ovarian cancer cells (NACT8) were cultured 
in a low-attachment 6-well plate for 96 h. The culture was treated with 10 µM JSI-
124 or DMSO for 30 or 120 min. Spheroids were isolated by passing the suspension 
through a 20-µm filter. Reverse filtration was performed to collect spheroids larger 
than 20 µm into a 6-well plate. Cells were washed and spheroids were collected 
for the mesothelial clearance assay. A mesothelial cell monolayer was prepared by 
plating mesothelial cells on glass-bottomed dishes (MatTek Corporation) coated 
with 5 μg ml−1 fibronectin (Sigma–Aldrich). Cells were maintained in culture until 
confluent (~48 h after plating). Suspended NACT8 cell spheroids were collected and 
added to a confluent mesothelial monolayer expressing green fluorescent protein, 
allowed to attach for 30–60 min, then imaged for up to 16 h using a Nikon Ti-E 
inverted motorized widefield fluorescence microscope equipped with an incubation 
chamber. Only spheres that remained attached during the experiment were used for 
quantification. Mesothelial clearance was quantified as previously described42,43.

Protein extraction and western blot analysis. Cells were lysed in RIPA lysis buffer 
(150 mM NaCl, 1.0% IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1 SDS and 
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50 mM Tris (pH 8.0), with protease and phosphatase inhibitors) on ice for 30 min. 
Phosphatase and protease inhibitors added to the RIPA buffer (Sigma–Aldrich) 
were purchased as PhosSTOP and complete EDTA-free mini tablets, respectively 
(Roche). Western blots were performed as described44 using the indicated 
antibodies: phospho-Tyr705 STAT3 (9131; Cell Signaling Technology), STAT3 
antibody (sc-482; Santa Cruz Biotechnology) and tubulin (T5168; Sigma–Aldrich).

Luciferase assay. Heya8 cells were transfected with the STAT3-responsive 
luciferase reporter M67-luc (provided by J. Bromberg at the Memorial Sloan 
Kettering Cancer Center) and renilla luciferase (Promega) using lipofectamine 
2000 (ref. 44). Cells were pretreated with 1 µM JSI-124 for 1 h, then stimulated with 
10 ng ml−1 oncostatin M (Peprotech) for 6 h. Luciferase activity was measured using 
a dual-luciferase kit (Promega) on a Luminoskan luminometer. Firefly luciferase 
activity was normalized to renilla and expressed relative to media controls.

Immunofluorescence. Formalin-fixed, paraffin-embedded tissues were cut at 
a thickness of 5 µm and mounted on glass slides. Direct immunofluorescence 
was performed as previously described45 using the following antibodies: 
anti-HLA-DPB1-Alexa 647 (Abcam; clone EPR11226, 1:50) and 
anti-Pan-Cytokeratin-eFluor 570 (Thermo Fisher Scientific; AE1/AE3; 1:100). 
Images were acquired on a CyteFinder slide-scanning fluorescence microscope 
(RareCyte) using a 10× objective.

PDX model experiments. HGSOC PDX models derived from patients with 
different treatment histories were selected for implantation: DF20 (BRCA1/2 
wild type; treatment naive; clinically platinum sensitive); DF101 (BRCA1 mutant; 
two lines of previous therapy; clinically platinum resistant); and DF68 (BRCA1 
mutant; six lines of previous therapy; clinically platinum resistant)28. For all of the 
experiments, we used NOD-SCID IL2Rγnull mice (NSG; The Jackson Laboratory). 
For the carboplatin treatment study, to facilitate detecting minimal residual disease, 
we used a subcutaneous model instead of an intraperitoneal model.

Frozen stocks of tumor cells were briefly thawed, and 5 × 106 cells were injected 
subcutaneously into the flanks of NOD-SCID IL2Rγnull mice (NSG; The Jackson 
Laboratory). After tumors were established (150–300 mm3), animals were divided 
into two groups per model: vehicle (n = 5) and carboplatin (n = 30). Animals were 
treated with DMSO or with intraperitoneal carboplatin at 70 mg kg−1 weekly for 
three total doses. Mice were monitored by weight, clinical appearance and tumor 
burden (as determined by measurements using calipers and bioluminescence 
imaging (BLI)). For BLI imaging, the mice were anesthetized and imaged every 
1–2 weeks. Vehicle-treated mice were harvested based on predefined criteria: 40% 
weight gain, 20% weight loss, ascites, or for humane reasons. Carboplatin-treated 
mice for the minimal residual disease group were harvested at the nadir of BLI 
signal and size. For the remaining carboplatin-treated mice, we continued weekly 
to biweekly BLI monitoring and harvested them at the end point using the same 
criteria as for the vehicle mice. For the minimal residual disease cohort, the 
entirety of the tumor was harvested for scRNA-seq. For the remaining carboplatin 
cohort, at the final harvest, the majority of the tumor was harvested for scRNA-seq 
with one fragment added to 10% neutral buffered formalin and one fragment 
snap frozen. Solid organs were also placed in formalin. Tumors and tissues were 
disaggregated as previously described9. Tumor cells expressing mCherry were 
isolated and flow-sorted into 96-well plates as described above, then subjected to 
plate-based scRNA-seq and analyzed in a pooled fashion.

For the JSI-124 treatment, PDX model DF20 was selected and 5 × 106 tumor 
cells were injected into two cohorts of mice: one subcutaneously to induce 
tumors; and one intraperitoneally to induce ascites (n = 5 per group). For the first 
experiment (tumor formation), at 7 d post-injection of the tumor cells, the animals 
were treated with DMSO versus intraperitoneal JSI-124 at 1 mg kg−1 daily for 14 d. 
For the second experiment (established tumors), tumors were allowed to grow 
for 3 weeks after cell injection, then DMSO versus intraperitoneal JSI-124 dosing 
proceeded daily for 14 d. In each experiment, animals were monitored by BLI 
weekly and killed at the study end point at day 16.

Plate-based scRNA-seq data processing. Expression levels were quantified as 
Ei;j ¼ log2 TPMi;j=10þ 1

� �

I
, where TPMi,j refers to transcripts per million for gene i 

in cell j, as calculated by RSEM for Smart-seq2 samples46. TPM values were divided 
by ten since we estimate the complexity of single-cell libraries to be about 100,000 
transcripts and would like to avoid counting each transcript around ten times. 
This would be the case with TPM, which may inflate the difference between the 
expression level of a gene in cells in which the gene is detected and those in which 
it is not detected. This modification has a minimal influence on the expression 
values, but decreases the difference between the expression values of undetected 
genes (that is, zero) and that of detected genes (data not shown), thereby reducing 
the impact of dropouts on downstream analysis.

For each cell, we quantified two quality measures:

	1.	 The number of genes for which at least one read was mapped, which is indica-
tive of library complexity; and

	2.	 The average expression level (E) of a curated list of housekeeping genes, 
which is meant to verify that genes expected to be expressed highly (regard-
less of cell type) are indeed detected as highly expressed.

Scatterplot analyses of all profiled cells separated low- and high-quality cells 
based on these two measures (data not shown), and we therefore conservatively 
excluded all cells with either fewer than 2,000 detected genes or an average 
housekeeping expression level (E) below 2.5, as was done in previous studies9,47. 
In each sample, we further excluded cells with ad-hoc thresholds in case there was 
a subset of cells with fewer detected genes that appeared to be of low quality by 
manual inspection. For cells passing these quality controls, the median number of 
detected genes was 7,892.

We used the remaining cells (k = 1,297 for human samples and k = 795 
for mouse samples) to identify genes that are expressed at sufficient levels 
by calculating the aggregate expression of each gene i across the k cells, as 
Ea ið Þ ¼ log2 average TPMið Þ1;:::;kþ1

h i

I

, and excluded genes with Ea < 4. For 
the remaining cells and genes, we defined relative expression by centering the 
expression levels, Eri;j ¼ Ei;j � average Eið Þ1;:::;k

I
. The relative expression levels, 

across the remaining subset of cells and genes, were used for downstream analysis.

Droplet-based scRNA-seq data processing. The droplet-based data processing 
followed similar lines to that of the plate-based data, with the necessary changes to 
accommodate the change in platform:

	1.	 TPM values were obtained from CellRanger.
	2.	 Threshold values for the number of detected genes were modified, to ac-

commodate for the lower detection rate of the droplet-based platform. The 
minimum number of detected genes was set to 1,000.

	3.	 In addition, the droplet-based platform also enabled quantification of the 
number of transcripts (that is, unique molecular identifiers); therefore, we 
used a second filtering parameter of at least 4,000 transcripts. We did not use 
a threshold for housekeeping genes.

	4.	 Genes were chosen for downstream analyses if they were detected with more 
than five transcripts by more than five cells.

Dimensionality reduction and clustering. Following the initial processing steps 
described above, we clustered the cells using t-stochastic neighborhood embedding 
(t-SNE; with a perplexity of 30 and default parameters of MATLAB’s tsne function) 
followed by density clustering using DBscan (with the parameters epsilon=5 and 
min-points=10). In the case of smart-seq2 clusters, cluster 1 (which was dominated 
by cells of patient 8) was also assigned several outlier cells from patients 9 and 
10, which were manually excluded from the downstream analysis. Clusters were 
annotated based on the expression of marker genes (as described above) and 
based on the top 30 most upregulated genes in each cluster (as defined by the 
fold-change between the average expression in the corresponding cluster compared 
with the average expression in all other clusters) (Figs. 1d and 2c). The malignant 
cell clusters were further supported by CNAs, which were estimated as described 
previously9,47.

Expression programs of intra-tumoral heterogeneity. For each of five patients 
and each of the three PDX models for which we had profiles of >100 malignant 
cells, we used NMF to identify six to nine expression modules of genes coherently 
co-varying across the cells within each tumor separately. For this purpose, we 
used NMF (as implemented by the MATLAB nnmf function, with the number of 
factors set to ten) to identify variable expression programs. NMF was applied to the 
relative expression values (Er) by transforming all negative values to zero. Notably, 
undetected genes included many drop-out events (genes that are expressed but 
are not detected in particular cells due to the incomplete transcriptome coverage), 
which introduced challenges for the normalization of scRNA-seq; since NMF 
avoids the exact normalized values of undetected genes (as they are all zero), it 
may be beneficial in analysis of scRNA-seq (data not shown). We retained only 
programs for which the standard deviation in cell scores within the respective 
tumor was larger than 0.8, which resulted in a total of 35 programs across the five 
human samples and 24 across the mouse models. The programs were compared 
by hierarchical clustering, using the number of overlapping genes (among the 50 
top-scoring genes of each program) as a similarity metric. Five clusters of programs 
(two cell cycle and three inflammatory programs) were identified in the human 
samples based on a minimum overlap of ten genes between programs, and used to 
define meta-signatures. For each cluster, NMF gene scores were log2-transformed 
and then averaged across the programs in the cluster, genes were ranked by their 
average scores, and the top 30 genes were defined as the meta-signature.

To evaluate whether similar programs of intra-tumor heterogeneity recurred 
in the test dataset, we defined a small set of n core genes for each meta-signature, 
consisting of those genes that were identified in multiple tumors and/or were 
established as related to the program’s inferred function. We then examined 
whether there was an enrichment of cells in which a large number of those 
genes were detected as expressed. We counted the number of cells in which 
the expression of X of those genes was detected, for X = [1…n]. To assess the 
significance of the observed counts, we repeated the analysis 10,000 times with 
other sets of n genes referred to as control gene sets. Each control gene set was 
chosen such that it had a similar distribution of expression levels to that of the 
signature’s core genes. To that end, we first partitioned all analyzed genes into 50 
bins based on their average expression across all cancer cells. Next, we defined each 
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control gene set by randomly sampling from each bin the same number of genes 
that were in that bin among the signature’s core genes. The fraction of simulations 
(out of 10,000) in which an equal number of the core signature genes were detected 
as expressed was used to define the P value of observed counts.

TCGA subtype scores and purity estimate. Bulk RNA-seq data of samples, as 
well as NMF clustering and differential expression analysis were downloaded from 
the Broad Institute Firehose website (https://gdac.broadinstitute.org/), along with 
additional tumor and clinical annotations. Classification of tumors to predefined 
molecular subtypes was done based on the NMF clustering with four factors, and 
the average expression of the top 100 differentially expressed genes for each cluster 
was defined as the subtype signatures, for which single-cell clusters were scored. 
Purity data was defined by ABSOLUTE39.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Processed data are available from the Gene Expression Omnibus (GSE146026) and 
raw data are available via the Broad Institute Data Use Oversight System (https://
duos.broadinstitute.org/#/home). Detailed instructions on establishing a Data Use 
Oversight System account can be found at https://duos.broadinstitute.org/#/home. 
Source data for Extended Data Fig. 8 are provided with the paper.

Code availability
Specific code will be made available upon request (without restrictions) to itay.
tirosh@weizmann.ac.il. Code for inference of CNAs is available at https://github.
com/broadinstitute/inferCNV.
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Extended Data Fig. 1 | Patient and sample characteristics. a, Timing (x axis, days) of therapies (color blocks) and sample collection (arrows) in each 
patient (y axis). b, Cell type composition does not group samples by treatment history. Proportion (color bar) of the four major cell types (columns) in 
each of the ascites samples (rows) profiled by droplet-based scRNA-seq. c, Cell intrinsic profiles do not group samples by treatment history. Pearson 
correlation coefficient (color bar) between the mean profiles of cancer cells (left), CAF (middle) or macrophages (right) of each pair of samples (rows, 
columns) profiled by droplet-based scRNA-seq and having at least 20 cells in each type.
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Extended Data Fig. 2 | Clustering and characterization of malignant and non-malignant cell clusters in patient ascites by droplet scRNA-seq. a, 
t-stochastic neighborhood embedding (tSNE) of 9,609 droplet-based scRNA-seq profiles from 8 samples (as in Fig. 1b), colored by unsupervised cluster 
assignment. b, Cluster 9 is an inflammatory subset of CAFs. Comparison of the average expression (log2(TPM + 1)) of each gene in CAF cluster 9 (y axis) 
vs. CAF clusters 6 and 7 (x axis). Red: immunomodulatory genes. c, CAF diversity observed within a single sample. Differential expression (log2(TPM + 1)) 
between CAF8 and CAF6/7 cells in patient 5.1 only of the top up- and down- regulated genes from (b). (d-f) Two distinct macrophage programs. 
d, Hierarchical clustering of macrophages (rows, columns) from cluster 10 from either Patient 5.0 (left) or Patient 6 (right). Shown are the Pearson 
correlation coefficients (color bar) between expression profiles of macrophages, ordered by the clustering. Yellow lines highlight the separation into two 
main clusters. e, Left: Differential expression (log2(fold change)) for each gene (dot) between the two clusters identified in (d) for Patient 6 (x axis) or 
patient 5 (y axis), demonstrating high consistency. Top left corner: Pearson’s r. Genes significantly differentially up or down regulated in both patients are 
marked in red and blue, respectively. Middle and Right: Expression levels (color bar, log2(fold change)) of the highlighted differentially expressed genes 
from the left panel (rows) across macrophages from Patient 5 (middle) and Patient 6 (right) sorted by the hierarchical clustering of (d). (f) As in (e) for 
each other samples tested. Right panel: correlation between the average expression of cluster 1 and cluster 2 genes across cells from each of the  
samples tested.
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Extended Data Fig. 3 | Consistent clusters among droplet and plate based scRNA-seq. a, Pearson correlation coefficient (color bar) between the average 
expression profiles of 302 cluster marker genes in cells in clusters defined from either droplet-based or plate-based scRNA-seq (rows, columns; ordered 
by hierarchical clustering). b, Pearson correlation coefficient of the mean profile of cell type specific clusters comparing droplet based and plate-based 
scRNA-seq.
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Extended Data Fig. 4 | Inferred CNA of single cells from plate based scRNA-seq profiles. Average relative copy number (color bar) in each chromosomal 
position (y axis) based on the average expression of the 100 genes surrounding that position (ref. 9) in each cell in the malignant cell clusters 1-6 (x axis), 
compared to non-cancer clusters used as a reference, when using the original data (left) or when randomly ordering the genes across the genome and 
repeating the analysis (right), as control.
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Extended Data Fig. 5 | Mesenchymal and immunoreactive TCGA subtypes reflect CAFs and macrophages by comparison to droplet based scRNA-seq 
profiles. Subtype score (color bar), based on average expression of subtype-specific genes (Methods) of each cluster from the droplet-based scRNA-seq 
dataset (rows) for each of four TCGA subtypes (column). Only clusters with > 10 cells are represented in this figure.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | A putative stemness program in Patient 7 modules. a,b, Intra-tumoral expression modules in patients 7 and 5. Relative expression 
(color bar, Methods) of the top 30 module-specific genes (rows) in each module (ordered by module, dashed vertical lines), as defined by NMF (Methods) 
across all cancer cells (columns; ordered by hierarchical clustering) from patients 7 (a), or 5 (b, same as Fig. 3a–c). Selected genes are annotated.  
c, Co-variation of stemness related genes in patient 7. Relative expression of three putative stemness markers (rows) in cells from patient 7, rank ordered 
by the cell’s average expression of the three markers. d,e, Stemness related co-varying module present in patient 7 but not patient 8. Relative expression 
of the stemness score of patient 7 (top 20 genes (row) positively (top) or negatively (bottom)) correlated with the average expression of the three 
stemness genes in (c) in either cells from patient 7 (d) or patient 8 cells (e), with cells ordered by their average expression of the putative stemness score. 
(f) Stemness program is not detected in other ascites and primary tumor samples from our test cohort. Number of cells (y axis) expressing increasing 
numbers (x axis) of genes defining the stemness program from Patient 7 (CD24, CD133 (PROM1) and ALDH1A3) in patient cohort 3 (red) or expressing 
control genes with similar expression pattern in 10,000 simulations (g) Identification of cells expressing MHC Class II as cancer cells. Expression (color 
bar, log(TP100K + 1)) of MHC Class II program, epithelial (cancer cell) markers, and macrophage markers (rows) in cancer cells (defined by marker 
expression and CNA) and macrophages (columns). Top panel: CNA signal, defined as the square of the inferred copy-number log-ratios, averaged across 
all genes. (h–j) MHC-II, cytokine and interferon programs are detected in other ascites and primary tumor samples from our test cohort. As in (f) for the 
three major immune programs defined as (h) MHC Class II (core genes (CD74, HLA-DRA, HLA-DRB1, HLA-DRB5, HLA-DMA, HLA-DPA1), (i) cytokines (core 
genes TNF, CXCL8, IL32, ICAM1, CCL2, CCL20, NFKBIA); and (j) interferon (IFN) program (core genes IFI6, IFI44, IFIT1, IFIT3, ISG15, MX1). Error bars: SD, 
*=p < 0.05, **=p < 0.001; empirical p-value is the fraction of simulations in which an equal number of stemness-program genes are detected as expressed.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Some programs in malignant cells recur between patient ascites and PDX. a, Congruent cancer cell profiles between patient and 
PDX cells. Left: Pearson correlation coefficient (color bar) between mean profiles (rows, columns) among major cell types discovered by plate-based 
scRNA-seq (cancer cells, macrophages and CAFs) in patient samples and three patient-derived xenograft models (DF20, DF68 and DF101). Right: 
Distribution of Pearson correlation coefficient (x axis) between different subsets. n = 27 (8 patient samples and 19 PDX samples). b–d, Intra-tumoral 
expression modules. Relative expression (color bar, Methods) of the top 30 module-specific genes (rows) in each module (ordered by module, dashed 
horizontal lines), as defined by NMF (Methods) across all cancer cells (columns; ordered by hierarchical clustering) from PDX models DF20 (b), DF68 
(c), and DF101 (d). Selected genes are annotated. Top bar (b, c): cell of origin from individual mice. e,f, Cell cycle and inflammatory/immune programs 
recur across PDX models. (e) Number of top genes (color bar) shared between pairs of patients (rows, ordered as in Fig. 3e) and PDX (columns; ordered 
by hierarchical clustering) modules. Top: origin of each PDX module. (f) Module membership in the top 30 (black) or 50 (grey) of selected genes (rows) 
from cell cycle (top), immune-related (middle), and other (bottom) modules across all modules (columns), ordered as in (e). All genes included were 
shared between a corresponding PDX module and patient ascites module. g, Cytokine and MHC-II programs are only identified in patient samples. Median 
expression (x axis) and % of outlier highly expressing cells (y axis; average log2(TPM + 1)>5 and more than 2 SD larger than the mean of all cells) of the 
cytokine (left) and MHC-II (right) programs in each patient (black) and PDX (blue) samples. N = 25 (6 patient samples and 19 PDX samples).
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Extended Data Fig. 8 | Prominent expression of JAK-STAT pathway genes and on-target activity of JSI-124 against STAT3. a, Prominent expression of 
JAK-STAT pathway genes. Mean gene expression (x axis, log2(TPM + 1)) and percentage of expressing cells (y axis) across the entire cell’s transcriptomes 
with highlighted signaling genes in patient cancer cells (top left), PDX models (top right), patient-derived CAFs (bottom left) and macrophages (bottom 
right). Black curve: LOWESS regression curve. Dark and light blue: top 5 and 10 percentiles calculated in a moving average of 200 genes. b, STAT3 activity 
induced by Oncostatin M. Relative (mean) luciferase activity (y axis) in Heya8 ovarian cancer cells transfected with a STAT3 responsive reporter that were 
stimulated with OSM to activate STAT3 for 6 h or untreated with either 1 h pre-treatment with JSI-124 (1 μM) or vehicle (x axis) for 1 h. p = 0.09, t test. 
Error bars: SD. c, JSI-124 treatment reduced pSTAT3. Cropped immunoblot (representative of duplicates; uncropped available in Source Data) of STAT3 
and phosphorylated (p-)STAT3 from cells treated with 1μM JSI-124 for the indicated hours (bottom). Par=parental cell line, and R1 and R2 refer to two 
independently generated platinum-resistant cell lines.
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Extended Data Fig. 9 | Dose response of JSI-124 in 2D cultures or 3D spheroids. Relative (mean) viability (y axis, relative luminescence signal compared 
to DMSO control) of three ovarian cancer cell lines (labels, top) grown for 4 days in either ultra-low attachment conditions eliciting formation of spheroids 
a, or in 2D cultures in regular plastic culture surfaces b, and treated with JSI-124, carboplatin, paclitaxel, cisplatin or olaparib at indicated doses (x axis,  
log µM). Error bars: SD. n = 4. Representative of biological duplicates.
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Population characteristics All patients involved in this study were females diagnosed with high-grade serous ovarian cancer. Samples were obtained 
before treatment was initiated and/or during therapy with platinum-based chemotherapy or other clinically used agents or in 
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